Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rong Li Lab probes mechanism of asymmetry in meiotic cell division

09.10.2008
The Stowers Institute's Rong Li Lab has characterized a mechanism that allows for asymmetrical cell division during meiosis in oocytes.

By tracking chromosome movement in live mouse oocytes, the team discovered that chromosomes can recruit to their vicinity a protein called formin-2. This protein allows the oocyte to retain the majority of the cytoplasm – a requirement for embryonic development after fertilization – while the other daughter cell (called a polar body) resulting from the asymmetric division gets only a minimal amount and subsequently dies.

The work was published this week in the advance online publication of Nature Cell Biology.

Formin-2 is an actin-nucleating protein that can promote the formation of actin filaments around the chromosomes. Actin filaments undergo dynamic elongation and shortening and, in the process, push the chromosomes towards the outer edge of the oocyte. After the chromosomes reach the periphery, the actin filaments orient the cell division plane so that most of the cytoplasm required to sustain the earliest stages of development stays with the daughter cell that retains the identy of the oocyte.

"This work revealed the general mechanism by which the actin cytoskeleton drives chromosome movement in mammalian meiotic oocytes," said Hongbin Li, Ph.D., Senior Research Associate and lead author on the publication. "Our findings will enable us to carry out even more detailed dissection of the molecular components and mechanisms."

"Infertility and birth defects are often related to problems during oocyte meiotic cell divisions," said Rong Li, Ph.D., Investigator and senior author on the paper. "Failure in the chromosome movement will lead to failed oocyte maturation and infertility. These findings provide an important step toward a better understanding of the process of meiotic divisions and how actin generates the force to power intra-cellular movements."

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.stowers-institute.org/labs/RongLiLab.asp

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>