Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of gene regulator in skeletal muscles demonstrated

03.06.2011
Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance.

Researchers from the University of Texas Southwestern Medical Center and Virginia Tech have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

The research was posted in the Proceedings of the National Academy of Sciences' online early edition on June 1 in the article, "Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6," by Daniel Quiat of UT Southwestern, Kevin Voelker of Virginia Tech, Jimin Pei and Nick V. Grishin of UT Southwestern, Robert Grange of Virginia Tech, and Rhonda Bassel-Duby and Eric N. Olson of UT Southwestern.

"Based on previous studies by our group and others, we knew that a gene regulator called Sox6 promotes development of fast muscle in the embryo," said Olson, professor of molecular biology. "But the function of Sox6 in adult muscle was unknown."

By studying adult mice that lacked Sox6 in fast muscles, the researchers observed that fast muscle took on the performance attributes of slow muscles.

Virginia Tech's role in the research project was to measure muscle performance. "We demonstrated experimentally that there were functional changes that supported the development of slow muscle," said Grange, associate professor of human nutrition, food, and exercise in the College of Agriculture and Life Sciences. At Virginia Tech, he worked with Voelker, a postdoctoral associate in the department.

"The most obvious change is the speed at which muscle can shorten," said Grange. "Fast muscle shortens quickly; but, in the absence of Sox6, our measurements showed that fast muscle shortened more slowly and the muscle was less fatigued after contracting for several minutes. Both of these muscle performance changes demonstrated that a fast muscle that lacked Sox6 became more like a slow muscle."

"Skeletal muscles can adapt based on the stress imposed," explains Grange. "For example, if you lift weights, your muscles become stronger; if you run long distances, your muscles become less fatigued. What we don't yet know fully is how adaptations occur at the gene level and protein level in response to these different stresses. The current study is an important step to understand how muscle adaptation occurs."

Although applications of the new information are distant, Grange points out, "The more you know about how the body works, the easier it is to keep it healthy."

"We might be able to manipulate gene regulators by training in a certain way. We don't know what that is, but that is one of the objectives. From a muscle disease perspective, there may be characteristics that lead back to the proteins that control adaptations, such as Sox6," said Grange.

"You cannot have adaptations in the muscle unless there are changes in the genes turned on and those turned off. The genes turned on produce the proteins responsible for the muscle adaptation" he said. "The most exciting aspect of the study was that we clearly demonstrated changes in muscle function from a fast type to a slow type of skeletal muscle that was dependent on the absence of Sox6."

Link to the article: http://www.pnas.org/content/early/2011/05/31/1107413108.abstract

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>