Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic arm probes chemistry of 3-D objects by mass spectrometry

26.03.2014

Proof-of-concept study could soon allow analysis of early earth chemistry on meteorites and other rocks

When life on Earth was first getting started, simple molecules bonded together into the precursors of modern genetic material. A catalyst would have been needed, but enzymes had not yet evolved.


The scientists programmed the robotic arm to poke the sample with an acupuncture needle.

Credit: Rob Felt.

One theory is that the catalytic minerals on a meteorite's surface could have jump-started life's first chemical reactions. But scientists need a way to directly analyze these rough, irregularly shaped surfaces. A new robotic system at Georgia Tech's Center for Chemical Evolution could soon let scientists better simulate and analyze the chemical reactions of early Earth on the surface of real rocks to further test this theory.

In a proof-of-concept study, scientists selected a region for analysis on round or irregularly-shaped objects using a 3-D camera on a robotic arm, which mapped the 3-dimentional coordinates of the sample's surface. The scientists programmed the robotic arm to poke the sample with an acupuncture needle. The needle collected a small amount of material that the robot deposited in a nearby mass spectrometer, which is a powerful tool for determining a substance's chemical composition.

"You see the object on a monitor and then you can point and click and take a sample from a particular spot and the robot will go there," said Facundo Fernandez, a professor in the School of Chemistry and Biochemistry, whose lab led the study. "We're using an acupuncture needle that will touch very carefully on the surface of the object and then the robot will turn around and put the material inside of a high resolution mass spectrometer."

The research was published online February 28 in the journal Analyst, a publication of the Royal Society of Chemistry. The work was supported by a National Science Foundation (NSF) Major Research Instrumentation Program (MRI) grant and by the National Science Foundation (NSF) and NASA Astrobiology Program, under the NSF Center for Chemical Evolution.

Mass spectrometry is a powerful tool for analyzing surface chemistry or for identifying biological samples. It's widely used in research labs across many disciplines, but samples for analysis typically have to be cleaned, carefully prepared, and in the case of rocks, cut into thin, flat samples. The new robotic system is the first report of a 3-D mass spectrometry native surface imaging experiment.

"Other people have used an acupuncture needle to poke a sample and then put that in mass spec, but nobody has tried to do a systematic, three-dimensional surface experiment," Fernandez said. "We are trying to push the limits."

To show that the system was capable of probing a three-dimensional object, the researchers imprinted ink patterns on the surfaces of polystyrene spheres. The team then used the robotic arm to model the surfaces, probe specific regions, and see if samples collected were sufficient for mass spectrometry analysis. The researchers were able to detect inks of different colors and create a 3-D image of the object with sufficient sensitivity for their proof-of-principle setup, Fernandez said.

The research was the result of collaboration between Fernandez's group, which specializes in mass spectrometry, and Henrik Christensen's robotics group in the College of Computing. Christensen is the KUKA Chair of Robotics and a Distinguished Professor of Computing. He is also the executive director of the Institute for Robotics and Intelligent Machines (IRIM) at Georgia Tech.

"The initial findings of this study mark a significant step toward using robots for three-dimensional surface experiments on geological material," Christensen said. "We are using the repeatability and accuracy of robots to achieve new capabilities that have numerous applications in biomedical areas such as dermatology."

"It doesn't happen very often that a group in mass spectrometry will have a very talented robotics group next to them," Fernandez said. "If we tried to learn the robotics on our own it could take us a decade, but for them it's something that's not that difficult."

Christensen's team loaned a Kuka KR5 sixx R650 robot to Fernandez's lab for the study. Afterwards, Fernandez's lab purchased their own robot from Universal Robots. They have also upgraded to a new mass spectrometer capable of resolution nearly eight times higher than the one used in the study. They will soon begin replicating early Earth chemistry on rocks and analyzing the reaction products with their robotic sampling system.

"We really want to look at rocks," Fernandez said. "We want to do reactions on rocks and granites and meteorites and then see what can be produced on the surface."

The technology could also be applied to other research fields, Fernandez said. For example, the robot-mass spec combo might be useful to dermatologists who often probe lesions on the skin, which have distinct molecular signatures depending on if the lesion is a tumor or normal skin tissue.

###

This research is supported by the American Recovery and Reinvestment Act (ARRA) under the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) (Grant number 0923179), and by the NSF and NASA Astrobiology Program under the NSF Center for Chemical Evolution (CHE-1004579). Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Rachel V. Bennett, et al., "Robotic Plasma Probe Ionization Mass Spectrometry (RoPPI-MS) of Non-Planar Surfaces." (Analyst, February 2014) http://dx.doi.org/10.1039/c4an00277f

Brett Israel | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: 3-D Earth Evolution NSF Robotic acupuncture mass reactions surfaces three-dimensional

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>