Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Against Toxic Sugars

22.04.2013
University of Würzburg researchers describe a new form of gene activation in the scientific journal "Cell". They also show how salmonella bacteria thus prevent themselves from being poisoned by too much sugar. The new findings also hold promise for application in bioengineering.
Sugar is vital to all organisms. Bacteria, plants, animals and humans use glucose and other sugars as an energy source and as building blocks for biosynthesis. Therefore, it is very important to keep the intracellular sugar concentration at the right level.

After taking in glucose into their cells, the bacteria first attach a phosphate group to the sugar molecule. This prevents the glucose from freely leaving the cell. At the same time, the glucose is made available as an energy source in this way.

Stress response to an excessive amount of sugar

As essential as glucose may be to the bacteria: It can also become dangerous to them. An excessive amount of sugar in the cell inhibits the growth of the bacteria and can even cause damage to their genome.

"For this reason, the bacteria react to excessive sugar levels with a stress response," says Professor Jörg Vogel at the Institute for Molecular Infection Biology of the University of Würzburg: In this process, a small RNA molecule leads to a reduction in the quantity of transporter molecules responsible for importing sugar into the cell.

Long sought-after system found

However, this stress response progresses at a rather slow pace. "There must be an additional way of reducing stress, enabling the bacteria to get rid of the problematic sugar more quickly" says Vogel. Researchers have been trying to find this system for about 40 years.

Together with Carin Vanderpool from Illinois (USA), Vogel's team has now identified this system in salmonella bacteria. As reported in the journal "Cell", the researchers discovered a previously unknown mechanism of gene activation.

Small RNA triggers a quick response

The centerpiece of sugar reduction in salmonella bacteria is a small RNA molecule, which also triggers the slow stress response to sugar: It activates an enzyme responsible for removing the phosphate group from glucose and other sugars, allowing the sugar molecules to flow practically all by themselves out of the cell.

"The small RNA triggers the quick stress response with a completely novel mechanism of gene regulation," the Würzburg Professor explains. "It actively stabilizes the messenger RNA for the phosphatase enzyme, leading to high intracellular levels of this enzyme."

This shows again that RNA molecules are able to regulate each other without protein intervention. Equally fascinating is the fact that the same regulatory RNA can both activate and suppress genes with similar function, which enables a very precise response to stress.

Promising for bioengineering or antibiotics research

According to Vogel, the new findings might be interesting for industrial application, namely for the biotechnological production of sugars with bacterial cultures. The important small RNA might be used, for instance, to modify bacteria in a way that they retain as much sugar in their cell as possible – even if it means their own death. The application of this method would improve the sugar yield in bioreactors.

Furthermore, bacteria – including pathogens, such as salmonella – generally take in more sugar than they can actually process. If the activation of the corresponding stress response is inhibited in a targeted way, this should enhance the efficacy of antibiotics," Vogel explains.

Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis. Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jörg Vogel. Cell, Volume 153, Issue 2, 426-437, 11 April 2013, doi: 10.1016/j.cell.2013.03.003

Contact person

Prof. Dr. Jörg Vogel, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-80898 joerg.vogel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>