Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA splicing machinery offers new drug target

19.05.2015

Blocking the spliceosome delays the progression of lymphoma in mice

A widespread cancer-causing protein called MYC promotes the growth of tumor cells in part by ensuring that RNA transcripts are properly spliced, according to latest work from A*STAR researchers1. Drugs that block parts of the cell’s splicing machinery may provide a new way to halt the proliferation of MYC-driven cancers.


Blocking the spliceosome could inhibit the growth of MYC-driven tumors.

© defun/iStock/Thinkstock

“Cells overexpressing the oncogene MYC will be more sensitive to inhibition of the splicing machinery,” says Ernesto Guccione, from the A*STAR Institute of Molecular and Cell Biology, who led the research. “Targeting the core components of the splicing machinery may be a novel Achilles’ heel to therapeutically target MYC-driven tumors.”

The MYC oncoprotein is a central driver in the majority of human cancers. MYC binds to active regulatory elements in the genome and broadly amplifies gene expression, leading to rampant cell growth. This process, however, is not random or indiscriminate. Guccione, in collaboration with colleagues in Italy, recently showed that MYC preferentially activates distinct subsets of target genes to control cellular states2.

Following up on that observation, Guccione and his colleagues from A*STAR decided to investigate which gene sets are turned on by MYC in mouse models of lymphoma. One gene set that stood out involved components of the spliceosome, the molecular complex that helps prepare messenger RNA (mRNA) transcripts for protein production by removing noncoding segments called introns.

These genes include PRMT5, which codes for a key enzyme that ensures proper maturation of the spliceosomal complex. PRMT5 and others help assemble the proteins that form the spliceosome. Guccione’s team showed that mice with only one functional copy of PRMT5 — instead of the usual two — develop lymphoma more slowly.

PRMT5 depletion led to a range of splicing defects linked to the retarded tumor growth. And drug-like molecules called antisense oligonucleotides (which disrupt proper splicing) also reduced the viability of cancer cells taken from mice with lymphoma. Together, the results suggest that splicing-associated genes like PRMT5 are critical to MYC-driven tumor formation.

Further support for this idea came from human clinical samples. Guccione and colleagues studied samples from people with lymphoma. They found a link between MYC overexpression and the activity of spliceosome-related genes. Notably, high expression of PRMT5 correlated with worse clinical outcomes. In the laboratory, knocking out PRMT5, or another core component of the splicing machinery in human lymphoma cells lines, also reduced cell viability.

“The inhibition of PRMT5 may have potential therapeutic utility in cancer treatment,” explains Cheryl Koh, a postdoctoral fellow in Guccione’s lab and the co-first author of the new study.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Molecular and Cell Biology, the Institute of High Performance Computing and the Bioinformatics Institute.


References
Koh, C. M., Bezzi, M., Low, D. H. P., Ang, W. X., Teo, S. X. et al. MYC regulates the core Pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature advance online publication, 11 May 2015 (doi: 10.1038/nature14351). | article
Sabò, A., Kress, T. R., Pelizzola, M., de Pretis, S., Gorski, M. M. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7236
http://www.researchsea.com

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>