Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA offers a safer way to reprogram cells

26.07.2010
New technique could revert cells to immature state that can develop into any cell type

In recent years, scientists have shown that they can reprogram human skin cells to an immature state that allows the cells to become any type of cell. This ability, known as pluripotency, holds the promise of treating diseases such as diabetes and Parkinson's disease by transforming the patients' own cells into replacements for the nonfunctioning tissue.

However, the techniques now used to transform cells pose some serious safety hazards. To deliver the genes necessary to reprogram cells to a pluripotent state, scientists use viruses carrying DNA, which then becomes integrated into the cell's own DNA. But this so-called DNA-based reprogramming carries the risk of disrupting the cell's genome and leading it to become cancerous.

Now, for the first time, MIT researchers have shown that they can deliver those same reprogramming genes using RNA, the genetic material that normally ferries instructions from DNA to the cell's protein-making machinery. This method could prove much safer than DNA-based reprogramming, say the researchers, Associate Professor of Electrical and Biological Engineering Mehmet Fatih Yanik and electrical engineering graduate student Matthew Angel.

Yanik and Angel describe the method, also the subject of Angel's master's thesis, in the July 23 issue of the journal PLoS ONE.

However, the researchers say they cannot yet claim to have reprogrammed the cells into a pluripotent state. To prove that, they would need to grow the cells in the lab for a longer period of time and study their ability to develop into other cell types — a process now underway in their lab. Their key achievement is demonstrating that the genes necessary for reprogramming can be delivered with RNA.

"Before this, nobody had a way to transfect cells multiple times with protein-encoding RNA," says Yanik. (Transfection is the process of introducing DNA or RNA into a cell without using viruses to deliver them.)

In 2006, researchers at Kyoto University showed they could reprogram mouse skin cells into a pluripotent, embryonic-like state with just four genes. More recently, other scientists have achieved the same result in human cells by delivering the proteins encoded by those genes directly into mature cells, but that process is more expensive, inefficient and time-consuming than reprogramming with DNA.

Yanik and Angel decided to pursue a new alternative by transfecting cells with messenger RNA (mRNA), a short-lived molecule that carries genetic instructions copied from DNA.

However, they found that RNA transfection poses a significant challenge: When added to mature human skin cells, mRNA provokes an immune response meant to defend against viruses made of RNA. Repeated exposure to long strands of RNA leads cells to undergo cell suicide, sacrificing themselves to help prevent the rest of the body from being infected.

Yanik and Angel knew that some RNA viruses, including hepatitis C, can successfully suppress that defensive response. After reviewing studies of hepatitis C's evasive mechanisms, they did experiments showing they could shut off the response by delivering short interfering RNA (siRNA) that blocks production of several proteins key to the response.

Once the defense mechanism is shut off, mRNA carrying the genes for cell reprogramming can be safely delivered. The researchers showed that they could induce cells to produce the reprogramming proteins for more than a week, by delivering siRNA and mRNA every other day.

Source: "Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins" by Matthew Angel and Mehmet Fatih Yanik. PLoS ONE 23 July, 2010

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: DNA DNA-based Mehmet PLoS One RNA Transfection cell type human cell human skin human skin cells skin cell

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>