Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Molecules Live Short Lives

13.07.2017

A research group at the Biozentrum, University of Basel, has developed a new method to measure the half-life of RNA molecules. The study revealed that commonly used methods provide distorted results and that RNA molecules live an average of only two minutes, ten times shorter than previously assumed. The results have now been published in the journal "Science Advances".

RNA molecules are individual transcripts of the cell’s DNA. They transfer the genetic information of the DNA and provide a template for the production of proteins that regulate all the cell’s processes. The small carriers of information are themselves regulated throughout their lifespan, or rather half-life. After being produced, RNA molecules serve as a template for protein production for a limited time, before they are degraded.


RNA molecules live an average of two minutes before they are eliminated by an exosome.

University of Basel, Biozentrum

To date, there have been two main scientific methods used to measure the half-life of RNA. As the research team led by Prof. Attila Becskei at the Biozentrum, University of Basel, has now discovered, these conventional methods can be quite imprecise and deliver inconsistent results. Becskei's team has found a new method that demonstrates that RNA molecules do not last for an average of 20 minutes but rather only two minutes. This was a challenging endeavor, because no one knew in advance which method yields the correct results”, says Becskei.

The “gene control method” shows: RNA is short lived

Knowing the half-life of RNA is significant for scientific studies on the cell cycle. The whole process of cell division depends on the right amount of proteins being available at the right time. If RNAs are not available in the right concentrations at a given phase of the cell cycle, errors occur.

The “gene control method” used by Becskei was already known but has so far not been used to measure the half-life of RNA molecules. This is because this method requires complex genetic engineering and is time-consuming, since only one RNA molecule at a time can be studied. For this a single gene of the DNA is regulated in such a way that the production of RNA can be switched on and off. If the RNA production is stopped, it is possible to measure the survival of the already produced RNA in the cell. From this, the lifetime of this RNA can be determined. “Hence, this method only provides a result for one RNA molecule, but the results are quite accurate”, emphasizes Becskei.

The experiments were repeated for some 50 different genes and showed that 80 percent of all RNAs undergo a rapid turnover, living less than 2 minutes and can be classified as short-lived. Only about 20 percent live longer, for about 5 to 10 minutes. “These results are astounding, if you consider that until now it was assumed that on average RNAs survived 20 minutes in the cell”, says Becskei.

Conventional methods with drawbacks

To date, essentially two main classes of methods have been used by scientists to measure the half-life of RNA molecules. In one method “transcriptional inhibition”, a substance is introduced to the cell, which inhibits RNA production from all genes. “If, however, the production of all RNAs – is inhibited, other processes in the cell are also altered and the cell stops functioning. This distorts the results”, explains Becskei.

The “in vivo labeling” method also has its downside: The RNAs are first labeled and then observed to see how long they can be traced in the cell. However, these labelling with modified molecules can also interfere with cell function and can lead to false results. Thus, all so far used methods have a drawback: The measurement itself influences the processes to be measured. That’s why the results are distorted. “Sometimes it is hard to believe that scientists could have unknowingly worked with methods that produce inconsistent results for almost 30 years”, says Becskei. “It seems that the philosopher of science Paul Feyerabend was right to say that science is often quite anarchistic.”

The research group also compared their method with the existing ones and have found the highest correlation between Becskei's method and a unique variant of the “in-vivo labeling” method. In most cases, both measure classified the same RNAs as stable and unstable even if the mean half-life estimates differ. Now, the team would like to investigate in which areas the latter method provides accurate results and can be used reliably.

Original source

Antoine Baudrimont, Sylvia Voegeli, Eduardo Calero Viloria,Fabian Stritt, Marine Lenon, Takeo Wada, Vincent Jaquet, Attila Becskei
Multiplexed gene control reveals rapid mRNA turnover.
Advanced Science, published online July 12, 2017.

Further information

Attila Becskei, University of Basel, Biozentrum, Tel. +41 61 207 22 22, email: attila.becskei@unibas.ch

Heike Sacher, Biozentrum, Communications, Tel. +41 61 207 14 49, email:
heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/RNA-molecules-live-short-...

Heike Sacher | Universität Basel

Further reports about: Basel Biozentrum DNA Molecules RNA RNA molecule RNAs cell cycle gene control

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>