Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising star of brain found to regulate circadian rhythms

15.04.2011
The circadian system that controls normal sleep patterns is regulated by a group of glial brain cells called astrocytes, according to a study published online on April 14th in Current Biology, a Cell Press publication.

Neuroscientists from Tufts University School of Medicine found that disruption of astrocyte function in fruit flies (Drosophila) led to altered daily rhythms, an indication that these star-shaped glial cells contribute to the control of circadian behavior. These results provide, for the first time, a tractable genetic model to study the role of astrocytes in circadian rhythms and sleep disorders.

According to the National Institute of Neurological Disorders and Stroke, more than 40 million Americans suffer from sleep disorders. Some sleep disorders arise from changes to the internal clock that is modulated by environmental signals, including light. Biologically, the internal clock is known to be composed of a network of neurons that controls rhythmic behaviors. Rob Jackson and his team previously had found that normal circadian rhythms require a glial-specific protein. In the new study, the team demonstrates that glia, and particularly astrocytes, are active cellular elements of the neural circuit that controls circadian rhythms in the adult brain.

"This is significant because glia have been traditionally viewed as support cells rather than independent elements that can regulate neurons and behavior. Neurons have had center stage for some time but current research is establishing the role of glial cells in brain function," said Rob Jackson, PhD, professor of neuroscience at Tufts University School of Medicine (TUSM) and member of the genetics and neuroscience program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts. Jackson is also the director of the Center for Neuroscience Research (CNR) at TUSM.

"We used cellular and molecular genetic techniques to manipulate glial cells in the adult brain of fruit flies and found that such cells regulate neurons of the circadian network and behavior" said first author Fanny Ng, PhD, a postdoctoral associate in the Jackson lab. Ng added, "this is the first study to show that glia can modulate the release of a neuronal factor that is essential for normal circadian behavior."

Jackson's team observed altered rhythms in locomotor activity with glial manipulations, an indication the circadian clock had been disrupted, which in humans can contribute to jet lag or serious sleep disorders.

"In order to develop treatments for these disorders, we need to understand their cellular and molecular bases. Our work suggests that Drosophila can serve as a model system for genetic and molecular approaches to understand astrocyte function and astrocyte-neuron interactions. This undoubtedly will contribute to a better understanding of sleep and other neurological disorders that result from circadian dysfunction," said Jackson.

An additional author on this paper is Michelle Tangredi, PhD, a graduate of the Sackler program in neuroscience and a postdoctoral associate in Jackson's lab.

This research was funded by grants from the National Heart, Lung and Blood Institute and the National Institute of Neurological Disorders and Stroke (NINDS) and a training grant from the National Institute of Child Health and Human Development, all of the National Institutes of Health, and an award from the Russo Family Charitable Foundation Trust through TUSM. The Center for Neuroscience Research is funded by NINDS and Tufts University.

Ng FS, Tangredi MM, and Jackson FR. Current Biology. "Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner." DOI 10.1016/j.cub.2011.03.027

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>