Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionizing Cancer Research with Diamond

09.03.2018

With nanodiamond the tumor tissue can be detected sooner and distinguished better from the healthy surrounding tissue. Aiming at an improvement of the MRI procedure in the joint project »DiaPol« Fraunhofer IAF cooperates with the University of Ulm, the company NVision Imaging Technologies GmbH, the Hebrew University of Jerusalem and the Israeli Center for Advanced Diamond Technologies (ICDAT). The novel technology offers great opportunities: the extremely precise and quickly available results make it possible to adjust the treatment of the tumor tissue to the patient in a significantly more efficient way than it has ever been possible with previous methods.

It’s the uncertainty that frightens us most: Cancer. According to a report by the Robert Koch Institute from 2016, the absolute number of new cases in Germany has almost doubled since the early 1970s. Time is a crucial factor, as an early and accurate diagnosis can save lives. During the past decades the methods to detect suspicious tissue in the body have continuously become more precise. Magnetic resonance imaging is particularly gentle and efficient for patients because it works without any harmful chemicals or radioactive substances. MRI can also create three-dimensional, detailed cross-sections of the human tissue.


The Fraunhofer IAF is coordinating the joint project »DiaPol«. As part of the project, researchers combine the classical MRI method with a nanodiamond polarisator.

romaset – Fotolia.com

Classical MRI uses magnetic fields in order to produce high-resolution images. A human body is composed of 70 percent water. Each water molecule contains two hydrogen atoms with magnetic nuclei. The magnetic fields in these nuclei are generated by nuclear spins. A so-called polarisator can be used in order to amplify and adjust the tiny magnetic fields of these spins. The better the spins are adjusted, the stronger is the MRI’s signal and the more accurate the results. By adding high frequency pulses, certain atomic nuclei in the human body are excited resonantly, which can be measured as an electrical signal. A program subsequently translates the signals into high-resolution, three-dimensional images.

10,000 times more sensitive thanks to diamond-based polarizers

For the novel MRI procedure, the researchers combine the classical method with a nanodiamond polarisator. Built-in nitrogen vacancy centers in a diamond play an important role in the polarizer of the innovative process: the electron spins in these centers generate magnetic fields that can be transmitted to other nuclear spins, and thus adjust them (»polarize« them). This procedure hyperpolarizes the nanodiamonds or external molecules. They can then be injected into the human body before the MRI scan, which significantly increases the imaging sensitivity. As an expert in the field of diamond nanotechnology, Fraunhofer IAF is involved in this part of the project.

»Our tasks are the diamond’s optimization on the nanoscale and the incorporation of the nitrogen vacancy centers«, explains Dr. Verena Zürbig from Fraunhofer IAF. The project coordinator and group leader for »Diamond Technology« is convinced: »Compared to the conventional procedure, the diamond polarizers will significantly increase the MRI’s sensitivity.« The company NVision sees great prospect in the new procedure: »Not only could it become possible to diagnose cancer early, but also to identify the cancer cell’s exact stage.«

Diamond as a material has some unbeatable advantages. For example, the hyperpolarization with diamond can be achieved at room temperature, thus enabling a much faster and cost-efficient method in comparison to conventional procedures, which still require very low temperatures. One of the project’s sub-goals is the construction of extremely small, flexible and mobile diamond polarizers. This innovation enables fast analyzing and shortens the time for patients waiting for their results from several weeks to a few days. By providing more precise measurements and a corresponding improved treatment, the project hopes to bring relief to patients often struggling with the uncertainty and fear caused by cancer.

Technical terms briefly explained:

Nuclear spin: The momentum of a proton around its own center of gravity.
MRI: Short for »Magnetic Resonance Tomography«.
Polarization: Increases the nuclear magnetization and thus the intensity of the signal in an MRI.
Hyperpolarization: The ordered alignment of nuclear spins well beyond thermal equilibrium.

Weitere Informationen:

https://www.iaf.fraunhofer.de/en/media/press-releases/nano-diamond.html

Laura Hau | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>