Revealing the regulating mechanism behind signal transduction in the brain

An essential element in this process is a controlled protein production along with the synapse. VIB researchers connected to the Center for Human Genetics (K.U.Leuven) are now discovering how the Fragile X protein (FMRP) ensures that protein production is controlled at synapse and regulated by brain activity. Their findings are being published in the authoritative scientific journal Cell.

Fathoming the brain

Our ‘gray matter’ has yet to divulge all its secrets. For example, we do not yet fully understand how we are able to learn and remember things. We do know that dendrites and axons – the offshoots of brain cells – play a crucial role by making contact with each other in so-called synapses, through which signals are transmitted between different brain cells. Moreover, for properly functioning brain activity at a synapse, the right proteins must be present in the right concentrations. It has been known for some time that the brain’s cells are able to produce proteins directly at the place where they are needed. But exactly how the subtle regulation of this process works is still to be discovered.

FMRP: controlling protein production

Claudia Bagni (VIB, K.U.Leuven, University of Rome Tor Vergata) has been studying the FMRP protein for years now. The absence of FMRP leads to the Fragile X syndrome, a mental handicap afflicting a thousand Belgians. In this particular syndrome, the synapses are not well-formed. So, it is no surprise that FMRP plays an important role in the development and functioning of the brain. The researchers have already shown that FMRP suppresses protein production, but how has remained a mystery.

A shared job with CYFIP1

Ilaria Napoli and her colleagues from Claudia Bagni’s group are now discovering that FMRP cannot perform its job without another protein: CYFIP1. In a previous study, Claudia Bagni and her collaborators have shown that a reduced amount of FMRP in the brain increases the production of some neuronal proteins. The VIB researchers in Leuven have now elucidated the mechanism behind this. They have found that complexes of FMRP and CYFIP1 are located at the synapses and together suppress the local production of a number of proteins.

In the transduction of signals between brain cells, i.e. synaptic activation, CYFIP1 is released from the complex, whereby FMRP can no longer exercise its suppressing action. This is the impetus for the production of the proteins that are under the control of FMRP.

A change in the concentration of FMRP or CYFIP1 causes a disruption in this strict regulation of protein production. This, in its turn, causes diseases like Fragile X syndrome and Autism. Indeed, CYFIP1 has been recently found associated to Autism.

Importance of this research

With their research, Napoli and Bagni are shedding a bit more light on synapses in the brain – giving us more insight into learning and remembering, and also into a number of ‘brain disorders’. We now understand that, through its absence, FMRP plays a role in diseases like Fragile X syndrome and Autism.

Media Contact

Jonas De Backer alfa

More Information:

http://www.vib.be

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors