Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking seizures associated with cardiac disease

09.08.2019

Fly study suggests neuronal gene malfunction, not oxygen deprivation, is behind long QT seizures

Most people with a medical condition called long QT syndrome have a mutation in a gene that causes bouts of fast, chaotic heartbeats. They also experience fainting spells and seizures. The clinical approach has largely assumed that when the heart beats erratically, the brain eventually does not get enough oxygen -- which in turn causes the seizures.


As suggested by its name, mutations in the gene seizure (sei for short) cause flies to become highly sensitive to heat stress. When ambient temperature goes up rapidly, wild type flies are able to escape these unfavorable conditions. In contrast, mutant flies are hypersensitive to heat and start seizing almost immediately. Hill et al. now show that the protective effect of sei comes from its activity in specific populations of neurons and glia cells in the fly brain. Shown are the neurons in the brain (top panel) and the ventral ganglion (bottom panel) (a structure homologous to the spinal cord), which express the sei protein (green). All other neurons are shown in magenta. The nuclei of all cells in the nerve cord are in blue.

Credit: Yehuda Ben-Shahar, Washington University in St. Louis

Research from Washington University in St. Louis finds that mutations of a gene implicated in long QT syndrome in humans may trigger seizures because of their direct effects on certain classes of neurons in the brain -- independent from what the genetic mutations do to heart function. The new work from Arts & Sciences was conducted with fruit flies and is published August 8 in PLOS Genetics.

"This gene seems to be a key factor in the physiological process that protects neurons from starting to fire uncontrollably in response to a rapid increase in temperature, which could lead to paralysis and death," said Yehuda Ben-Shahar, associate professor of biology in Arts & Sciences.

... more about:
»cardiac »flies »fruit flies »glia »nervous system »neurons

Alexis Hill, recently a postdoctoral fellow in the Ben-Shahar laboratory, discovered this unexpected relationship as she probed the nervous system response to acute environmental stress.

Heat in general causes neurons to start firing faster, so the brain is particularly sensitive to overheating. Mammals and other large animals have ways to maintain their internal temperature and protect their brains from heat. But not the fruit fly. With no extra bulk in his tiny body, the only thing a fly can do to regulate temperature is to move from an uncomfortable spot to a comfortable one.

Ben-Shahar had previously published work showing flies that lack a gene called sei could not act to save themselves at temperatures above 25 degrees Celsius (77 Fahrenheit). They had no ability to buffer heat stress, and started having seizures as temperatures increased.

This gene sei -- named by other researchers who had previously discovered its role in seizure activity -- shows up in lots of places in fruit flies: in the neurons responsible for primary communication of both excitatory and inhibitory signals, in the glia cells of the nervous system that support neurons in various ways, and in the heart.

In their new work, Hill and Ben-Shahar were able to show that sei protects against heat-induced hyperexcitability only when it is expressed in a few particular classes of neurons and glia. Knocking down the gene in the heart had no effect on seizure activity.

"The ability of flies to resist the heat is in neurons that release neurotransmitters that make other neurons fire faster, the ones that excite neurons," Ben-Shahar said.

Surprisingly, the study also uncovered a protective role for sei in glia, the other primary cell of the nervous system. Glia have traditionally been overshadowed by the importance of neurons, but in recent years they have been emerging as equally important in maintaining healthy brain functions. The fact that this work identifies a protective role of an ion channel in glia further supports the idea that glia have much broader physiological functions in the nervous system and how it might respond to environmental challenges, the researchers said.

A careful look through the scientific literature reveals many references to seizure associated with long QT syndrome, which afflicts human beings with a genetic mutation to a sei-comparable gene called hERG.

But most clinical practitioners assume that these seizures are a secondary outcome of cardiovascular disease. Ben-Shahar hopes this soon will change.

"If you look at population statistics, there is a much higher incidence of seizures in long QT patients than in the general population," he said. "Because cardiovascular dysfunction can cause all kinds of problems, in the literature right now it is assumed that the seizures are secondary -- that because the people have a sick heart they end up developing seizures and other things.

"It's possible, based on our data, that it's two independent effects. Because if the mutation is affecting the function of the gene in the heart, it will affect the function in the neurons.

"And in flies, it's not going to kill neurons," Ben-Shahar said. "We know that we can completely eliminate this gene from the fly genome -- and flies will develop normally, mostly. Yet they become extremely sensitive to environmental (conditions). It's possible that that's exactly what's happening in people -- that it's completely independent."

Media Contact

Talia Ogliore
talia.ogliore@wustl.edu
314-935-2919

 @WUSTLnews

http://www.wustl.edu 

Talia Ogliore | EurekAlert!
Further information:
https://source.wustl.edu/2019/08/rethinking-seizures-associated-with-cardiac-disease/
http://dx.doi.org/10.1371/journal.pgen.1008288

Further reports about: cardiac flies fruit flies glia nervous system neurons

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>