Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Results challenge conventional wisdom about where the brain begins processing visual information

03.03.2015

Neuroscientists generally think of the front end of the human visual system as a simple light detection system: The patterns produced when light falls on the retina are relayed to the visual cortex at the rear of the brain, where all of the “magic” happens that transforms these patterns into the three-dimensional world view that we perceive with our mind’s eye.

Now, however, a brain imaging study – published online by the journal Nature Neuroscienceon Mar. 2 – challenges this basic assumption.

Using high-resolution functional magnetic resonance imaging (fMRI), a team of researchers from Vanderbilt and Boston universities, have discovered that more complex processing occurs in the initial stages of the visual system than previously thought.

Specifically, they have found evidence of processing in the human lateral geniculate nucleus (LGN), a small node in the thalamus in the middle of the brain that relays nerve impulses from the retina to the primary visual cortex.

An important function of the visual cortex is the processing of rudiments of shape, the angles of lines and edges, which are important for defining the outlines of objects. The researchers found that the human LGN is also sensitive to the orientation of lines and that this effect is enhanced when a person simply pays attention to the orientations in an image.

“Our results demonstrate that even the simplest brain structures may play a fundamental role in complex neural processes of perception and attention,” said Frank Tong, professor of psychology at Vanderbilt, who conducted the study with postdoctoral fellow Michael Pratte and Sam Ling at Boston University.

“They also highlight how higher cortical areas can influence and modulate how we see by modifying the responses of neurons at the earliest stages in the visual pathway through feedback connections.”

“The findings challenge the conventional wisdom about how and where in the brain the processing of visual orientation information first occurs,” commented Michael A. Steinmetz, acting director of the Division of Extramural Research at the National Eye Institute, which provided funding for the study.

“The research also underscores the concept that the perception of visual stimuli evolves from dynamic processes in widely distributed networks in the brain.”

The research was supported by National Institutes of Health grants R01 EY01782 and R01 EB000461 and NIH Fellowship F32-EY022569.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

Contact:

David F. Salisbury, (615) 322-NEWS
david.salisbury@vanderbilt.edu

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>