Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resourceful Microbes Reign in World’s Oceans

25.06.2013
A new chapter in the exploration of microbial life

A research team led by Bigelow Laboratory for Ocean Sciences has discovered that marine microbes are adapted to very narrow and specialized niches in their environment. This may explain why so few of these microbes—usually less than 1%—can be grown for study in the laboratory.


PHOTO: Research underway in the Bigelow Single Cell Genomics Center. Photo by Dennis Griggs.

By utilizing new genetic tools, the researchers’ new ability to read and interpret genetic information from the remaining 99% will be pivotal in detecting and mitigating the impact of human activities in the ocean. Funded by the National Science Foundation, the study was published in the Proceedings of the National Academy of Sciences of the United States of America this week.

The cutting-edge technology that proved critical to the research, and was implemented on a large scale for the first time, is called single cell genomics.
“While other tools are available to analyze genes in uncultured microbes, they seldom tell us how these genes fit together and what microbes they come from,” said Ramunas Stepanauskas, the study’s senior author and director of the Bigelow Single Cell Genomics Center (SCGC). “By developing and applying high-throughput single cell genomics, we obtained the first near-complete genomic blueprints of many microbial types that dominate marine ecosystems but used to be inaccessible to scientific investigation.”

“We found that natural bacterioplankton are devoid of ‘genomic pork,’ such as gene duplications and noncoding nucleotides, and utilize more diverse energy sources than previously thought. This research approach opens a new chapter in the exploration of microbial life in the oceans and in other environments on our planet.”

“We found that genomic streamlining is the rule rather than exception among marine bacterioplankton, an important biological feature that is poorly represented in existing microbial cultures,” said Brandon Swan, lead author and postdoctoral researcher in the SCGC. “We also found that marine microbes are effectively dispersed around the globe, but they stay within their temperature ‘comfort zones.’ Bacteria that thrive in the frigid Gulf of Maine don’t show up near Hawaii. However, as long as the temperature is right, the same types are found anywhere in the world, whether on the coast of British Columbia, Northern Europe, or Tasmania.”

“Thanks to single cell genomics and other technological advances, we now have a much more accurate understanding of the biological diversity and processes taking place in the ocean,” said Tanja Woyke, a key co-author from the Department of Energy Joint Genome Institute. “The amount of adaptations and biochemical innovation that have accumulated in marine microorganisms over billions of years of evolution is astounding—a glass of seawater encodes more genetic information than a desktop computer can hold. This information represents a largely untapped source of novel natural products and bioenergy solutions, both essential for human well-being.”

Bigelow Laboratory for Ocean Sciences is an independent, non-profit center for global ocean research, ocean science education, and technology transfer. The Laboratory conducts research ranging from microbial oceanography -- examining the biology in the world’s oceans at the molecular level -- to the large-scale processes that drive ocean ecosystems and global environmental conditions.

EDITOR’S NOTE: Dr. Stepanauskas may be contacted at 207-315-2567, ext. 308, or at rstepanauskas@bigelow.org.

Contact: Tatiana Brailovskaya, Director of Communications, Bigelow Laboratory for Ocean Sciences, (207) 315-2567, ext. 103; tbrailovskaya@bigelow.org

Tatiana Brailovskaya | EurekAlert!
Further information:
http://www.bigelow.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>