Water (H2O) has a simple composition, but its dizzyingly interconnected hydrogen-bonded networks make structural characterizations challenging. In particular, the organization of water surfaces—a region critical to processes in cell biology and atmospheric chemistry—has caused profound disagreements among scientists.
Figure 1: A ‘snapshot’ from a molecular dynamic simulation reveals that water molecules align at air–water interfaces as coordinated pairs linked by hydrogen bonds. Copyright : 2012 RIKEN
Now, Tahei Tahara and colleagues from the RIKEN Advanced Science Institute in Wako, in collaboration with researchers in Japan and Europe, have uncovered the presence of strongly bonded water pairs at the air–water interface1, rather than previously hypothesized ‘ice-like’ surface structures.
Observing surface water molecules, just a few monolayers thick, requires special experimental techniques that prevent interference by more plentiful bulk particles. One such approach is called vibrational sum frequency generation (VSFG), a laser-based method that selectively vibrates interfacial molecules. Previous VSFG measurements of surface water showed two vibrations that resemble signals recorded from bulk ice and liquid water states. Some scientists have proposed that these vibrations correspond to a partially disordered mix of liquid and four-coordinated ice-like surface structures—a theory at odds with thermodynamic evidence.
gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com
Further reports about: > Advanced Investigator Grant > HD-VSFG > RIKEN > surface structures > surface water > water molecule > water surface
Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research
Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
The Arctic atmosphere - a gathering place for dust?
09.12.2019 | Earth Sciences
New ultra-miniaturized scope less invasive, produces higher quality images
09.12.2019 | Information Technology
Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Life Sciences