Researchers work at the frontiers of islet cell transplantation

Both studies are in the current issue of Cell Transplantation, freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

New perspectives on role of bone marrow stem cells in islet transplantation

The role of bone marrow (BM)-derived stem cells in the islet cell regeneration process continues to evolve. A team of Italian researchers reports that employing BM-derived stem cells as “feeder tissue,” playing a protective role in supporting pancreatic islet repair for clinical use in treating diabetes, presents new therapeutic possibilities. Which cellular components of BM play the feeder role has not been clear.

“BM-derived cells have been found to differentiate into endothelial cells and their presence has been accompanied by a proliferation of recipient pancreatic cells that resulted in increased insulin production in the host pancreas,” said corresponding author Dr. Lorenzo Piemonti.

The researchers speculate that BM plays a role as feeder tissue by modulating, or enhancing, vascularization.

“We recently demonstrated that pancreatic mensenchymal stromal cells (MSCs) originate from bone marrow cells,” added Dr. Piemonti. “This suggests that there might be a 'cross talk' between bone marrow cells and the pancreas. Even more complex is the question of whether BM-pancreas cross talk plays a role in the pathogenesis of diabetes.”

For the researchers, the 'easy availability' of BM, and that BM may offer “the ideal microenvironment for islet survival,” suggest that exploring the possibility of using BM as the site for islet transplantation and they have started a clinical trial aimed at expanding on that idea.

“There is mounting evidence that BM and BM-derived stem cells can participate in the regeneration of pancreatic isolates,” concluded Dr. Piemonti. “Future studies should evaluate their effect for the prevention and cure of diabetes should it be verifiable that there is a cross talk between BM and the pancreas.”

Contact: Dr. Lorenzo Piemonti, Diabetes Research Institute, S. Raffaele Scientific Institute, Via Oligettina 60, 20132 Milan, Italy
Tel: 39-02-26432706 Fax : 39-02 -26432871
Email: piemonti.lorenzo@hsr.it
Citation : Ciceri, F.; Piemonti L. Bone Marrow And Pancreatic Islet: An Old Story With New Perspectives. Cell Transplant. 19(12): 1511-1522: 2010.

Improving pancreatic islet culture and preservation

Retrieving and preserving islet cells taken from nonliving donors for the purpose of islet cell transplantation to regenerate islet cells for patients suffering from diabetes is a current and successful practice. However, ensuring the integrity of the donor cells has been problematic.

“Following human islet isolation, apoptosis, or programmed cell death, occurs,” said Dr. Maryam Tabrizian, member of a McGill University (Canada) research team. “Studies have shown that islet isolation exposes islets to a variety of stresses, including loss of vasculature and eventual hypoxia. These factors must be controlled to avoid cell death and the optimization of islet culture must be assured to prolong the survival and functionality of the cells in vitro.”

According to the research team, nearly half of the islet mass is lost during donor surgery, preservation, transport and isolation, causing patients to undergo a second islet cell infusion. Better avenues of post-isolation culture, for up to two months duration, are needed, they said. This requires a better understanding of islet biology and the “basement membrane” of islet tissue. The researchers recommend combining many strategies supporting understanding of the need to maintain islet structural integrity and to provide a viable environment for islet preservation.

“Manipulation of the culture media, surface modified substrates, and the use of various techniques, such as encapsulation, embedding, scaffold and bioreactor approaches are among those strategies,” concluded the researchers.

“The survival of islets after isolation remains a significant limiting factor in the field of islet transplantation.” commented Dr. Rodolfo Alejandro, section editor for CELL TRANSPLANTATION and Professor of Medicine at the University of Miami Miller School of Medicine. The prevention and repair of islet damage during isolation is of paramount importance. These two studies discuss novel approaches for this problem.

Contact: Dr. Maryam Tabrizian, Duff Medical Building, 3775 University St. Room 313, Montreal, Canada QC H3A 2B4.
Tel: (514) 398-8129 Fax: (514) 398-7461
Email maryam.tabrizian@mcgill.ca
Citation: Daoud, J.; Rosenberg, L.; Tabrizian, M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant. 19(12):1523-1535; 2010.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

Media Contact

David Eve EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors