Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover 'obesity gene' involved in weight gain response to high-fat diet

26.02.2009
Scientists have determined that a specific gene plays a role in the weight-gain response to a high-fat diet.

The finding in an animal study suggests that blocking this gene could one day be a therapeutic strategy to reduce diet-related obesity and associated disorders, such as diabetes and liver damage, in humans.

The researchers found that a diet rich in fat induced production of this gene, called protein kinase C beta (PKC beta), in the fat cells of mice. These mice rapidly gained weight while eating a high-fat diet for 12 weeks.

On the other hand, mice genetically engineered to lack PKC beta gained relatively little weight and showed minimal health effects after eating the same high-fat diet.

In comparing the effects of the high-fat diet and a regular diet, the scientists found that mice fed the high-fat diet produced more PKC beta in their fat tissue than did mice eating a regular diet.

“So we now know this gene is induced by a high-fat diet in fat cells, and a deficiency of this gene leads to resistance to fat-induced obesity and related insulin resistance and liver damage,” said Kamal Mehta, senior author of the study and a professor of molecular and cellular biochemistry in Ohio State University’s College of Medicine.

“It could be that the high-fat diet is a signal to the body to store more fat. And when that gene is not there, then the fat storage cannot occur.”

Though the complete mechanism remains unknown, the research to date suggests that rather than storing fat, mice lacking the gene burn fat more rapidly than they would if the PKC beta were present, Mehta said.

The research is available online in the journal Hepatology and is scheduled for later print publication.

Mehta and colleagues previously had created the hybrid mouse model by cross-breeding mice deficient in PKC beta with the C57 black mouse, a common animal used in research for studying diabetes and obesity. Despite the propensity for obesity from their original genes, the new mice lost weight while eating up to 30 percent more food than other mice.

In the earlier study, the mice ate a regular diet. In this new study, the researchers fed PKC beta-deficient and normal mice either a diet in which 60 percent of calories were derived from fat – the high-fat diet – or a standard diet in which 15 percent of calories came from fat. In the typical American diet, about 40 percent of calories are derived from fat.

The normal mice on the high-fat diet showed weight gain within three weeks, a trend that continued throughout the 12-week study. The PKC beta-deficient mice on the same diet gained less weight even while appearing to be extra hungry and eating more calories than the normal mice – meaning their lower body weight was not the result of eating less.

Of animals eating the high-fat diet, the fat tissue and livers in the normal mice were larger than those in the PKC beta-deficient mice, as well. The livers of the normal mice were on average about 50 percent larger than the livers in mice lacking the gene. And the white fat tissue – the tissue in which PKC beta was expressed as a result of the high-fat diet – was almost three times as heavy in the normal mice as in the PKC beta-deficient mice.

The protein-deficient mice were able to clear insulin to regulate blood sugar more rapidly than normal mice after eating the high-fat diet, meaning avoiding obesity also allowed them to avoid development of insulin resistance associated with diabetes, said Mehta, also an investigator in Ohio State’s Davis Heart and Lung Research Institute.

“Obesity leads to liver damage and to diabetes. So if we can take care of obesity associated with a high-fat diet, we can also take care of most of the related disorders,” Mehta said.

A separate component of the current study further showed that mice engineered to be obese also had about 500 percent more of the gene in their fat cells than did normal mice. Mehta and colleagues have assembled a team that includes an endocrinologist, bariatric surgeon and molecular biologist to examine human fat tissue from obese and lean patients to see if levels of PKC beta are elevated in obese humans, as well.

“It is very likely that this gene may be involved in a predisposition to obesity,” he said.

Knowing the gene is responsive in the fat cells is important to figuring out how to suppress its action. Future research will involve deleting the gene from fat cells in mice to see if these new mice have the same lean body type as mice that are completely deficient of PKC beta throughout their entire genome.

“We are generating more mouse models to vary expression of this gene and study the consequences of that on obesity and related disorders,” Mehta said.

So far, mouse models lacking the protein have not shown any damaging side effects related to the suppression of the gene, Mehta said. He speculates that PKC beta could be a so-called “thrifty” gene left over from humans’ days as hunter-gatherers, when the body needed to retain fat for survival.

This work is supported by the National Institutes of Health.

Co-authors on the paper were Wei Huang and Rishipal Bansode of the Department of Molecular and Cellular Biochemistry, and Madhu Mehta of the Department of Internal Medicine, all at Ohio State.

Contact: Kamal Mehta, (614) 688-8451; Mehta.80@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Emily Caldwell | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>