Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UC Riverside find solution to cell death problem vexing stem cell research

08.09.2010
Noboru Sato’s lab identifies chemical for keeping human pluripotent stem cells alive

Human pluripotent stem (hPS) cells can generate any given cell type in the adult human body, which is why they are of interest to stem cell scientists working on finding therapies for spinal cord injuries, Parkinson's disease, burns, heart disease, diabetes, arthritis, and other ailments.

Before hPS cell technologies can be translated into clinical applications, however, some obstacles must first be overcome.

One such obstacle frustrating stem cell researchers is "cell death" that the major types of hPS cells, including human embryonic stem cells and human induced pluripotent stem cells, mysteriously undergo when cultured as single cells, rendering them less suitable for research.

Researchers at the University of California, Riverside now show that a molecular motor, called "nonmuscle myosin II" (NMII), which exists naturally inside each hPS cell and controls various cellular functions, triggers the death of hPS cells when they are broken down to single cells.

While many details of how exactly NMII works remain unknown, a wide consensus among researchers is that NMII induces a contraction of the main internal components of the cells, eventually resulting in cell death.

To stop this cell death, the researchers treated hPS cells with a chemically synthesized compound, blebbistatin, and found that it substantially enhanced the survival of the cells by chemically inhibiting NMII. (Blebbistatin is commercially available from several companies that sell biologically active chemical compounds.)

"Our research shows that blebbistatin works as effectively as the most potent cell death inhibitor of hPS cells available today," said Noboru Sato, an assistant professor of biochemistry, whose lab led the research. "This discovery brings stem cell research a step closer towards finding therapies for several diseases."

Study results appear online, Sept. 7, in Nature Communications.

Sato explained that most of the current culture methods to grow hPS cells require animal-derived materials, such as Matrigel, for coating the culture surfaces. Without these materials, hPS cells cannot adhere to the culture plate. But the drawback of using them is that they could potentially cause contamination of hPS cells by introducing viruses and unknown pathogens.

"Another advantage of using blebbistatin is that we need no human- or animal-derived materials for coating the culture surfaces," he said. "This is because blebbistatin greatly facilitates the adhesion of cells to the culture surface. By combining blebbistatin and a chemically synthesized coating material, poly-D-lysine, we have developed a fully defined and simplified culture environment that allows hPS cells to grow under completely animal-free and contamination-free conditions."

Available through many companies, poly-D-lysine is a chemically synthesized animal-free coating material that is widely used for cell culture coating for other cell types. For hPS cells to adhere to the poly-D-lysine coating, blebbistatin must be added to the culture medium. "This new method shows that a novel combination of routinely available materials can create a completely distinct technological platform," Sato said.

Sato, a member of UC Riverside's Stem Cell Center, was joined in the research by Andrea Walker, a second-year medical student in the UCR/UCLA Thomas Haider Program in Biomedical Sciences and the first author of the research paper, Hua Su, and Nicole Harb of UCR; and Mary Anne Conti and Robert S. Adelstein of the Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.

UCR startup funds supported the study.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>