Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at TUAS Wildau Find Candidate Gene Culprits for Chronic Pain

07.05.2010
New insights by TH Wildau researchers and collaborators are reporting that chronic pain may be caused by the inadvertent reprogramming of more than 2,000 genes in the peripheral nervous system. The researchers speculate this research might ultimately lead to a therapy employing drugs that kill pain by correcting the activity of specific genes. The research was focused on the peripheral nervous system in rodent models.

According to DGSS, a section of the International Association for the Study of Pain, chronic pain affects 17% of all Germans and costs 25 billion Euro's per year in heath care alone. The quality of life of patients suffering from chronic pain can be severely limited. The pain can appear without an apparent cause and available treatments often fail to relieve it efficiently.

At the department of bioinformatics and competence center "Life Science Computing" at TH Wildau under the lead of Prof. Dr. Peter Beyerlein, powerful algorithms were developed to sort through 10.48 billion RNA sequences, assembling the complicated genomic puzzle. Researchers at Mayo Clinic carried out the wet lab experiments generating the needed mRNA molecules, which where then sequenced with Illumina's high-throughput sequencing technology, before they were transferred to Wildau. The Wildau computing results revealed a number of surprises, among them more than 10.465 novel exons and 421 novel genes.

"We were able to look much deeper into the universe of cellular processes, than ever before. It is fascinating how precisely a rigid mathematical reasoning, as consistently taught to our students, can help unveil the internal life of cells ," says Peter Beyerlein, who teaches computer science and bioinformatics in the Biosystems Engineering / Bioinformatics study course at TH Wildau.

The transatlantic team lead by the two Germans, Andreas Beutler, M.D (Mayo clinics Rochester) and Peter Beyerlein (TH Wildau) consisted of: Ronny Amberg, Paul Hammer and Gabriele Petznick all of TH Wildau, Germany;. and Michaela Banck, M.D., of Mayo Clinic; Cheng Wang, M.D., Mount Sinai School of Medicine; and Shujun Luo, Ph.D., Irina Khrebtukova, Ph.D., and Gary P. Schroth, Ph.D. all of Illumina Inc., Hayward, Calif.

The study was supported by the Richard M. Schulze Family Foundation and the National Institute of Neurological Disorders and Stroke as well as the Ministry of Science, Research and Culture (MWFK, State Brandenburg, Germany) and Philips Research, Netherlands.

Technical Contact:
Prof. Dr. rer. nat. Peter Beyerlein
E-mail: peter.beyerlein@googlemail.com
Tel. +49 3375 508 948

Bernd Schlütter | idw
Further information:
http://www.th-wildau.de

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>