Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018

Bacteria cause many serious illnesses, from food poisoning to pneumonia. The challenge for scientists is that disease-causing bacteria are extraordinarily resilient. For example, when bacteria like Escherichia coli (E. coli) undergo starvation, they massively reorganize their bacterial DNA, allowing them to survive stressful conditions.

In order to accomplish this feat and up their chance of survival, E. coli strains dramatically increase the amount of a protein called Dps, which compacts the bacterial DNA into a dense, crystal-like complex and protects it from being damaged. While previous research indicated that Dps is what protects bacteria from succumbing to starvation and other stressors, researchers did not know how this special protein worked.


Dps (in green) densely compacts DNA (blue strands), but this doesn't have any detectable effect on gene expression. RNA polymerase (pink) is still able to bind to the DNA and make RNA transcripts and express genes (shown in purple), while proteins that could cut and damage DNA are completely blocked.

Credit: University of Rochester illustration / Elio Abbondanzieri

In a new paper published in Cell, Anne Meyer, an associate professor of biology at the University of Rochester, along with Elio Abbondanzieri, a research associate, and other colleagues, describe some of the unique characteristics of Dps that help bacteria survive stressful conditions. Their research may help lead to more targeted antibiotics and other drug therapies.

THE 'RECIPES' WITHIN CELLS

Imagine that each of the strands of DNA in your cells are individual recipes. To make hair, you would pull out the hair recipe card. To digest your food, you would follow the digestion recipe card and express the gene "ingredients" in that recipe. When you're cooking, however, you don't want to have all your recipes bout in the kitchen at once, so you protect them by storing them away in a recipe box and pulling out the ones you need at the moment.

Cells in higher organisms such as plants and animals do not contain Dps. Yet, they do something similar, according to Abbondanzieri. "They package and compact portions of their genomes when they do not need them, like recipes stored away in a box. Compaction can help protect DNA from damage because the DNA is 'sealed off' from the rest of the cytoplasm."

Whenever DNA is compacted in higher organisms, the compacted genes are then less likely to be expressed. The researchers thought they would see the same effect in bacteria, a lower organism, when the bacterial DNA is compacted by Dps.

"Since we know Dps compacts bacterial DNA, we thought it would be quite likely that this compacting would cause a big change in the genes that are expressed," Meyer says.

"But we don't see that."

AN UNEXPECTED RESULT

While Dps did compact the bacterial DNA, the compaction did not have any effect on the expression of the genes. The enzyme that expresses, or transcribes, genes--RNA polymerase (RNAP)--was able to bind to DNA and express genes equally as well whether or not the DNA was condensed by Dps during times of stress.

"Bacteria is different from what we've seen in higher organisms because their 'recipes' can still be read, even when they are in the recipe box," Meyer says. "That is, they can still be expressed, even when they are compacted and protected. E. coli is the first bacteria example where we see strong compaction with no change in gene expression."

What, then, is the main role of Dps, if gene expression is preserved whether or not bacterial DNA is compacted?

The researchers observed that while RNAP still had full access to the Dps-compacted DNA, other proteins that could cut and damage DNA were completely blocked. Therefore, they theorize that Dps may condense bacterial DNA to protect the DNA from being broken or mutated, while still allowing the bacteria to express genes that help it fight stressful conditions.

If this is the case, the protective action of Dps is further enhanced by localized effects when it binds to DNA. For example, Dps can neutralize iron, an element that causes extensive damage to DNA.

TARGETED ANTIBIOTICS AND DRUG THERAPIES

Recognizing the effects of Dps could lead to the development of more targeted antibiotics.

"Many pathogenic bacteria, including those responsible for food poisoning, urinary tract infections, and Crohn's disease, rely on Dps to survive in their hosts," Meyer says. "What our research shows is if you want to target Dps action, you need to directly block its DNA binding or iron oxidation."

Meyer also notes that the research could potentially lead to radical new therapies that employ Dps as a shield to protect human DNA in high-stress environments, such as areas with high levels of radiation.

Could Dps be used in humans or other higher organisms to protect DNA while still allowing it to carry out its other functions?

Says Meyer: "I have no idea if this would work, but I think it would be really interesting to try out in a laboratory setting."

Media Contact

Lindsey Valich
lvalich@ur.rochester.edu
585-276-6264

 @UofR

http://www.rochester.edu 

Lindsey Valich | EurekAlert!
Further information:
http://www.rochester.edu/newscenter/researchers-targeting-dps-protein-bacterial-dna-recipes-332192/

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>