Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018

Bacteria cause many serious illnesses, from food poisoning to pneumonia. The challenge for scientists is that disease-causing bacteria are extraordinarily resilient. For example, when bacteria like Escherichia coli (E. coli) undergo starvation, they massively reorganize their bacterial DNA, allowing them to survive stressful conditions.

In order to accomplish this feat and up their chance of survival, E. coli strains dramatically increase the amount of a protein called Dps, which compacts the bacterial DNA into a dense, crystal-like complex and protects it from being damaged. While previous research indicated that Dps is what protects bacteria from succumbing to starvation and other stressors, researchers did not know how this special protein worked.


Dps (in green) densely compacts DNA (blue strands), but this doesn't have any detectable effect on gene expression. RNA polymerase (pink) is still able to bind to the DNA and make RNA transcripts and express genes (shown in purple), while proteins that could cut and damage DNA are completely blocked.

Credit: University of Rochester illustration / Elio Abbondanzieri

In a new paper published in Cell, Anne Meyer, an associate professor of biology at the University of Rochester, along with Elio Abbondanzieri, a research associate, and other colleagues, describe some of the unique characteristics of Dps that help bacteria survive stressful conditions. Their research may help lead to more targeted antibiotics and other drug therapies.

THE 'RECIPES' WITHIN CELLS

Imagine that each of the strands of DNA in your cells are individual recipes. To make hair, you would pull out the hair recipe card. To digest your food, you would follow the digestion recipe card and express the gene "ingredients" in that recipe. When you're cooking, however, you don't want to have all your recipes bout in the kitchen at once, so you protect them by storing them away in a recipe box and pulling out the ones you need at the moment.

Cells in higher organisms such as plants and animals do not contain Dps. Yet, they do something similar, according to Abbondanzieri. "They package and compact portions of their genomes when they do not need them, like recipes stored away in a box. Compaction can help protect DNA from damage because the DNA is 'sealed off' from the rest of the cytoplasm."

Whenever DNA is compacted in higher organisms, the compacted genes are then less likely to be expressed. The researchers thought they would see the same effect in bacteria, a lower organism, when the bacterial DNA is compacted by Dps.

"Since we know Dps compacts bacterial DNA, we thought it would be quite likely that this compacting would cause a big change in the genes that are expressed," Meyer says.

"But we don't see that."

AN UNEXPECTED RESULT

While Dps did compact the bacterial DNA, the compaction did not have any effect on the expression of the genes. The enzyme that expresses, or transcribes, genes--RNA polymerase (RNAP)--was able to bind to DNA and express genes equally as well whether or not the DNA was condensed by Dps during times of stress.

"Bacteria is different from what we've seen in higher organisms because their 'recipes' can still be read, even when they are in the recipe box," Meyer says. "That is, they can still be expressed, even when they are compacted and protected. E. coli is the first bacteria example where we see strong compaction with no change in gene expression."

What, then, is the main role of Dps, if gene expression is preserved whether or not bacterial DNA is compacted?

The researchers observed that while RNAP still had full access to the Dps-compacted DNA, other proteins that could cut and damage DNA were completely blocked. Therefore, they theorize that Dps may condense bacterial DNA to protect the DNA from being broken or mutated, while still allowing the bacteria to express genes that help it fight stressful conditions.

If this is the case, the protective action of Dps is further enhanced by localized effects when it binds to DNA. For example, Dps can neutralize iron, an element that causes extensive damage to DNA.

TARGETED ANTIBIOTICS AND DRUG THERAPIES

Recognizing the effects of Dps could lead to the development of more targeted antibiotics.

"Many pathogenic bacteria, including those responsible for food poisoning, urinary tract infections, and Crohn's disease, rely on Dps to survive in their hosts," Meyer says. "What our research shows is if you want to target Dps action, you need to directly block its DNA binding or iron oxidation."

Meyer also notes that the research could potentially lead to radical new therapies that employ Dps as a shield to protect human DNA in high-stress environments, such as areas with high levels of radiation.

Could Dps be used in humans or other higher organisms to protect DNA while still allowing it to carry out its other functions?

Says Meyer: "I have no idea if this would work, but I think it would be really interesting to try out in a laboratory setting."

Media Contact

Lindsey Valich
lvalich@ur.rochester.edu
585-276-6264

 @UofR

http://www.rochester.edu 

Lindsey Valich | EurekAlert!
Further information:
http://www.rochester.edu/newscenter/researchers-targeting-dps-protein-bacterial-dna-recipes-332192/

More articles from Life Sciences:

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

nachricht Gene mutation in the chloride channel triggers rare high blood pressure syndrome
17.10.2019 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Chains of atoms move at lightning speed inside metals

17.10.2019 | Materials Sciences

Stretchable circuits: New process simplifies production of functional prototypes

17.10.2019 | Materials Sciences

Scientists discover method to create and trap trions at room temperature

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>