Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how algae make surplus light energy harmless

26.11.2009
Light is of vital importance. However, excessive sunbathing causes sunburn - and not only in people and animals. Intensive exposure to sunlight can be harmful for plants, too.

A team of scientists from Münster and the USA have now been able to show for the first time how green algae protect themselves against such damage. The journal "Nature" carries a report on this in the issue published on 26 November 2009.

Plants are dependent on sunlight for growth. With the aid of light energy they produce sugar molecules which are converted into components of their cells and act as suppliers of energy. In this process plants extract carbon dioxide from the atmosphere and release oxygen. This process - called photosynthesis - is the basis of all life on earth.

"Photosynthesis provides the vegetable biomass - and thus the basis of food supply - for people and animals," says Prof. Michael Hippler from the Institute of Biochemistry and Plant Biotechnology at Münster University.

However, using light energy to produce biomass is a tricky business for plants. The absorption of light through cellular pigment molecules, e.g. through chlorophyll, can lead to the production of oxygen radicals in plants and thus damage them. "In order to protect themselves from such oxidative destruction - 'sunburn', so to speak," says Prof. Hippler, "plants have developed mechanisms for converting the surplus light energy into heat energy. Although algae produce a large share of the biomass generated worldwide, very little was known up to now about this protective mechanism in algae - in contrast to flowering plants." An international team of scientists led by Prof. Hippler and Prof. Kris Niyogi from the University of California in Berkeley, USA, have now thrown light on this sun protection mechanism in the unicellular green alga Chlamydomonas reinhardtii.

The sun protection factor is a certain light-harvesting protein (LHCSR3). "In general," explains Prof. Hippler, "such proteins harvest light - as their name suggests - and they make it available for photosynthesis. In this particular case, however, the protein permits the conversion of light energy to heat energy and in the process it renders the surplus light energy harmless." In comparison to traditional light-harvesting proteins, LHCSR3 has very old origins, probably stemming directly from the 'forebear' of all light-harvesting proteins. If there is any obstacle to the production of this protein, the algae are no longer able to dissipate harmful excess energy. They then get 'sunburn', which can in fact result in the alga cells dying.

"Interestingly, flowering plants have lost these protein molecules during their evolution and have developed another sun protection mechanism in which light is also converted into heat energy," says Prof. Hippler. "The discovery of the 'sun protection factor' in algae makes it possible for us to have deep insights into the regulation of aquatic photosynthesis, which is responsible for 50 percent of the primary production of biomass worldwide." Moreover, he says, the insights could be used to optimize the culture of micro-algae in bio-reactors. In this way the biotechnological production of biomass from algae could be improved, e.g. for the production of bio-fuels.

Reference:
Peers G. et al. (2009): An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518-521; doi: 10.1038/nature08587

Dr. Christina Heimken | idw
Further information:
http://www.nature.com/nature/journal/v462/n7272/full/nature08587.html
http://www.uni-muenster.de/hippler/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>