Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Re-sequence Six Corn Varieties, Find Some Genes Missing

26.11.2010
Most living plant and animal species have a certain, relatively small, amount of variation in their genetic make-up.

Differences in height, skin and eye color of humans, for example, are very noticeable, but are actually the consequences of very small variations in genetic makeup.

Researchers at Iowa State University, China Agricultural University and the Beijing Genomics Institute in China recently re-sequenced and compared six elite inbred corn (maize) lines, including the parents of the most productive commercial hybrids in China.

When comparing the different inbred corn lines, researchers expected to see more variations in the genes than in humans.

Surprisingly, researchers found entire genes that were missing from one line to another.

"That was a real eye opener," said Patrick Schnable, director of the Center for Plant Genomics and professor of agronomy at ISU.

The research uncovered more than 100 genes that are present in some corn lines but missing in others.

This variation is called the presence/absence variation, and Schnable thinks it could be very important.

Schnable's research is the cover article for the current edition of the journal Nature Genetics, and has been highlighted by the association Faculty 1000, which identifies the top 2 percent of important research from peer-reviewed journals worldwide.

"One of the goals of the research is to try to identify how heterosis (hybrid vigor) works," said Schnable.

Heterosis is the phenomenon in which the offspring of two different lines of corn grow better than either of the two parents. This is the attribute that has enabled corn breeders to produce better and better hybrids of corn.

For instance, two lines of corn can be bred to produce a hybrid that increases yield or resists drought or pests better than either of the parents.

With the current discovery that certain genes are missing from inbred corn lines, Schnable thinks science is a step closer to identifying which genes are responsible for which traits.

Knowing which genes are important would provide a shortcut for breeders to produce hybrids with specific traits.

For example, if one inbred line is missing a gene and is drought susceptible, crossing that line with a line that includes the missing gene and is drought tolerant, might lead to a better hybrid, according to Schnable.

"If we can understand how heterosis works, we might be able to make predictions about which inbreds to cross together," said Schnable. "I don't think we'll be able to tell plant breeders which hybrids will be the absolute winners. But we might be able to say 'These combinations are probably not worth testing.'"

Schnable sees combining genes from two lines as a chance to introduce the best from both plants.

"These are complementing somehow," he said. "It's like a really good marriage. She's good at this, and he's good at that, and together, they form a good team."

The potential for improvement is great, but Schnable cautions that much work needs to be done.

"We are at the point where we think this is going to be important, but we don't know which genes specifically are going to be important," he said. "Now we need to figure out which genetic combinations will be predictive of hybrid success."

Patrick Schnable, Agronomy, 515-294-0975, schnable@iastate.edu

Dr. Schnable is currently out of the country and can be contacted by e-mail.

Dan Kuester, News Service, 515-294-0704, kuester@iastate.edu

Dan Kuester | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>