Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers say animal-like embryos preceded animal appearance

28.11.2019

Animals evolved from single-celled ancestors before diversifying into 30-40 distinct anatomical designs. When and how animal ancestors made the transition from single-celled microbes to complex multicellular organisms is unclear. But a new scientific study suggests animal-like embryological traits developed long before animals themselves.

The research - by an international research team led by scientists from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences (NIGPAS) and the University of Bristol - focused on ancient fossils of Caveasphaera, a multicellular organism found in 609-million-year-old rocks in South China's Guizhou Province that defies easy definition as animal or non-animal.


Three-dimensional reconstruction of a Caveasphaera specimen, showing cell structures.

Credit: NIGPAS

Using X-ray microscopy, the researchers analyzed the tiny fossils, which measure about a half-millimeter in diameter and were preserved down to their component cells. Various fossils displayed different stages of Caveasphaera development - from a single cell to a multicellular organism.

"We were able to sort the fossils into growth stages, reconstructing the embryology of Caveasphaera," said Kelly Vargas from the University of Bristol.

YIN Zongjun of NIGPAS interpreted the discovery: "Our results show that Caveasphaera sorted its cells during embryo development in just the same way as living animals, including humans." YIN emphasized, however, there is "no evidence that these embryos developed into more complex organisms."

Still, the discovery offers the earliest evidence of a key step in the evolution of animals - the capacity to develop distinct tissue layers and organs.

The verdict still seems to be out on whether Caveasphaera was itself an animal or just an important step in animal evolution, even as researchers search for more fossils. Co-author ZHU Maoyan of NIGPAS said, "Caveasphaera looks a lot like the embryos of some starfish and corals - we don't find the adult stages simply because they are harder to fossilize."

Whatever Caveasphaera turns out to be, its fossils tell us that animal-like embryonic development evolved long before the oldest definitive animals appeared in the fossil record.

###

This research was funded through the Biosphere Evolution, Transitions and Resilience (BETR) programme, which is co-funded by the UK's Natural Environment Research Council (NERC) and the Natural Science Foundation of China (NSFC).

Media Contact

CHEN Xiaozheng
chxzh@nigpas.ac.cn

http://english.cas.cn/ 

CHEN Xiaozheng | EurekAlert!

Further reports about: Environment Research embryos fossils multicellular single cell

More articles from Life Sciences:

nachricht When plants bloom
29.11.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Harnessing the power of CRISPR in space and time
29.11.2019 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

When plants bloom

29.11.2019 | Life Sciences

Harnessing the power of CRISPR in space and time

29.11.2019 | Life Sciences

New evolutionary insights into the early development of songbirds

29.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>