Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal Epstein-Barr virus protein contributes to cancer

07.10.2008
Researchers at the University of Toronto have discovered that the EBNA1 protein of Epstein-Barr virus (EBV) disrupts structures in the nucleus of nasopharyngeal carcinoma (NPC) cells, thereby interfering with cellular processes that normally prevent cancer development.

The study findings are published in the October 3rd edition of the journal PLoS Pathogens and describes a novel mechanism by which viral proteins contribute to carcinogenesis.

EBV is a common herpes virus whose latent infection is strongly associated with several types of cancer including NPC, a tumor that is endemic in several parts of the world. With NPC only a few EBV proteins are expressed, including EBNA1. EBNA1 is required for the persistence of the EBV genomes; however, whether or not EBNA1 directly contributes to the development of tumors has not been clear, until now.

The study conducted by Lori Frappier a professor of molecular genetics and her team at the University of Toronto examined PML nuclear bodies and proteins in EBV-positive and EBV-negative NPC cells. Manipulation of EBNA1 levels in each cell type clearly showed that EBNA1 expression induces the loss of PML proteins and PML nuclear bodies through an association of EBNA1 with the PML bodies. PML nuclear bodies are known to have tumor-suppressive effects due to their roles in regulating DNA repair and programmed cell death, and accordingly, EBNA1 was shown to interfere with these processes.

"The findings support an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of PML nuclear bodies promotes the survival of cells with DNA damage," said Frappier. "Since EBNA1 is expressed in all EBV-associated tumors, including B-cell lymphomas and gastric carcinoma, these findings raise the possibility that EBNA1 could play a similar role in the development of these cancers. The cellular effects of EBNA1 in other EBV-induced cancers will require further investigation."

Lori Frappier | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>