Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal crucial immune fighter role of the STING protein

19.06.2012
Key protein's double wing-like crystal structure captures secreted molecules from invading pathogens, activating the body's powerful immune response

Researchers at Weill Cornell Medical College have unlocked the structure of a key protein that, when sensing certain viruses and bacteria, triggers the body's immediate immune response.

In the journal Molecular Cell, scientists describe the double wing-like crystal structure of this key protein, known as STING, which is a soldier on the front-line of the body's defense against pathogens. Researchers also show STING in action, displaying evidence of a bacterial infection -- an action that launches the body's innate immune response.

"Activation of STING is crucial to the ability of the human body to pick out bits of molecules secreted by pathogens, including many different viruses and bacteria, and alert the human body that they are there. By solving the structure of this protein, we now know how they do this crucial task," says the study's lead author, Dr. Qian Yin, a postdoctoral associate in the laboratory of Dr. Hao Wu, professor of Biochemistry at Weill Cornell Medical College.

"The STING structure provides a remarkable example of the pathogen-host interactions in which a unique microbial molecule directly engages the innate immune system," says Dr. Wu, the study's senior investigator and director of the Lab of Cell Signaling at Weill Cornell.

While the findings have no immediate clinical significance, they might be useful in helping to make vaccines against pathogens more effective. "Based on the structure we have of STING interacting with molecules secreted from bacteria, we may be able to design new molecules that induce a stronger, more persistent immune response," says Dr. Yin.

STING's wings and tail respond to invaders

All plant and animal life use an innate immune response to recognize and respond to an assault by pathogens. This primitive response is immediate, but not long-lasting or protective; the secondary, adaptive immune response sets up the long-term defense.

Previously, scientists thought the innate response was generic, but recently, investigators uncovered proteins expressed by cells of the innate immune system that identify specific molecular patterns linked to microbial pathogens. STING was recently identified as a member of a family of proteins that is involved in this pattern recognition task. It is specifically tasked at finding viruses that have double-stranded DNA genomes, and with locating bacteria.

While STING does not confront viruses or viral molecules directly, with bacteria, STING is on the lookout for small molecules that bacteria use to communicate within their cellular bodies. These molecules are cyclic-di-GMP, produced by most bacteria, and cyclic-di-AMP, used by bacteria that grow inside the cells of a host.

However STING is activated, the end result is the same, Dr. Yin says. STING induces a response from interferon, which activates other immune cells that kill the invading parasites.

The crystal structure of STING developed by the research team explains the overall structure of the protein. The second structure of STING, bound to cyclic-di-GMP, explains how the protein can recognize and pick up both cyclic-di-GMP and cyclic-di-AMP. This and other published data suggests how STING activates an immune response.

Dr. Yin describes STING's structure as two wings, which form the bottom and sides that hold cyclic-di-GMP. "It is like two people holding out their left or right hands, wrists joining and palms facing each other, and holding something in their palms."

"The amazing thing is STING only binds to cyclic-di-GMP and, to a lesser degree, cyclic-di-AMP, leaving all other nucleotides in the human body quite safe -- meaning it is not picking up natural human molecules," she says. "To use the hands analogy again, only cyclic-di-GMP and cyclic-di-AMP can fit into the space between the two hands. Other nucleotides are too small and they will slip."

The researchers also propose that once STING's wings picks up cyclic-di-GMP, the molecule frees up the tail of STING's protein? which then engages with other proteins.

"We believe this movement of the tail section of the protein is the switch that turns on the interferon response," says Dr. Yin.

"This work has uncovered a number of unexpected insights into how STING works," says Dr. Wu. "By binding tightly only to tiny molecules produced by bacteria, which then turns on the interferon switch, it prevents the immune system from attacking the body's own cells."

Study co-authors include Dr. Yuan Tian and Dr. Venkataraman Kabaleeswaran from Weill Cornell Medical College; Dr. Xiaomo Jiang and Dr. Zhijian J. Chen from the University of Texas Southwestern Medical Center; and Dr. Daqi Tu and Dr. Michael J. Eck from Harvard Medical School.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances — including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston.

Lauren Woods | EurekAlert!
Further information:
http://www.weill.cornell.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>