Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Pinpoint Key Stem Cells for Eating and Sex

23.07.2010
GW’s Dr. Anthony-Samuel LaMantia Publishes Research on Neural Precursors in the Developing Olfactory Ephithelium

New research, published in the journal Development, by Dr. Anthony-Samuel LaMantia, professor of Pharmacology & Physiology and director of the newly formed GW Institute for Neuroscience, and his colleagues have identified the stem cells that generate three critical classes of nerve cells – olfactory receptors (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons – that are responsible for enabling animals and humans, to eat, interact socially and reproduce.

This research is the first evidence identfying these stem cells. By studying mice at the earliest stages of embryonic development, LaMantia and his colleagues were able to identify the location of these cells, confirm that they divide slowly and symmetrically—thus making more stem cells, have a distinct molecular identity, and give rise to all cell types in the tissue—including ORNs, VRNs and GnRH neurons. These embryonic olfactory stem cells also are ultimately responsible for generating stem cells that remain in the lining of the nose throughout life and make new ORNs and VRNs. Thus these stem cells are also essential to enable a rare example of nervous system regeneration that continues throughout life.

“By identifying these stems cells, our research will help physicians understand why people have certain genetic, neurological, and mental disabilities. Olfaction is often compromised early in the course of a number of serious diseases including autism, schizophrenia, and Alzheimer’s disease, and GnRH deficiency is important in many cases of infertility. It is my hope that in the future, we will combine this sort of cell and molecular biology with clinical practice to develop better treatments for patients with these disorders,” said Dr. LaMantia.

To identify the early olfactory stem cell, Dr. LaMantia and his colleagues used multiple methods to define the identity and potential of dividing cells in the embryonic tissue that eventually becomes the nasal epithelium—the sheet of nerve cells that lines the nasal cavity. The researchers studied these tissues using molecular markers to distinguish different classes of cells and recombinant DNA technology as well as mutant mice to assess how several key genes define olfactory stem cell identity. They found a subset of cells that divide slowly and symmetrically—suggesting that these were indeed, the stem cells. They also showed that these cells were self renewing—another essential characteristic of stem cells. They defined several molecules that influence whether these stem cells remain as stem cells or divide terminally to make olfactory, vomeronasal and GnRH neurons. Finally, they showed that these stem cells uniquely give rise to ORNs, VRNs, and GnRH neurons.

To learn more about this research, view the journal Development article: http://dev.biologists.org/content/137/15/2471

Dr. LaMantia is available for comment. Please contact Anne Banner at the GW Medical Center Communications and Marketing at 202-994-2261.

About The George Washington University Medical Center
The George Washington University Medical Center is an internationally recognized interdisciplinary academic health center that has consistently provided high-quality medical care in the Washington, D.C. metropolitan area since 1824. The Medical Center comprises the School of Medicine and Health Sciences, the 11th oldest medical school in the country; the School of Public Health and Health Services, the only such school in the nation’s capital; GW Hospital, jointly owned and operated by a partnership between The George Washington University and a subsidiary of Universal Health Services, Inc.; and The GW Medical Faculty Associates, an independent medical practice with nearly 550 physicians in 47 clinical specialties.

Melissa Kadish | Newswise Science News
Further information:
http://www.gwumc.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>