Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make neural networks successfully detect DNA damage caused by UV radiation

25.10.2019

Researchers of Tomsk Polytechnic University jointly with the University of Chemistry and Technology (Prague) conducted a series of experiments, which proved that artificial neural networks can accurately identify DNA damages caused by UV radiation.

According to the authors, the ways the UV could affect the DNA structure, especially with the short-term irradiation, remain practically unstudied. The UV radiation is also known to cause cancer. However, it is almost impossible to detect minor changes in the DNA structure.


This is a schematic diagram of the SERS sensor operation in combination with the neural network for the analysis of DNA damage.

Credit: Tomsk Polytechnic University

"In the article Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage, we offer an alternative to well-known techniques. We used model samples such as oligonucleotides of various sequences. Some of them were irradiated with UV for different periods of time. Then, we used highly sensitive sensor systems developed by the research team based on plasmon-polariton gold gratings. The oligonucleotides were immobilized on the sensor surface. They subsequently were hybridized with the irradiated oligonucleotides. Then, the changes in the DNA structure were analyzed using a Raman spectrometer, " Pavel Postnikov, Associate Prof. of the TPU Research School of Chemistry & Applied Biomedical Sciences, says.

He also noticed that the obtained spectra were used to train artificial neural networks. The analysis and interpretation of the oligonucleotide sequence spectra is quite a complex task, especially if it is large-scale and performed with a high level of statistics processing.

"Using neural networks enabled to avoid the numerical processing of a huge number of spectra and it freed us from the optimization of measurement procedure. Besides, the neural networks both reveal the damages and effectively predict changes in the DNA structure caused by UV radiation.

Moreover, the neural network in combination with the surface-enhanced Raman spectroscopy can detect changes with high accuracy, where traditional methods fail", - Pavel Postnikov says.

The researchers believe that the neural networks and Raman spectroscopy can be successfully used for medical diagnostics in the future. Moreover, this technique can be further improved.

"Analysis of biological objects by Raman spectroscopy methods is still an extremely difficult, but interesting and promising issue. In this regard, DNA damages caused by the UV radiation was an extremely interesting model for us.

This concept provides the detecting of minor changes in the DNA structure. It can be expanded and improved, " - Pavel Postnikov underlines. He also specifies, that the studies are supported by a grant under the TPU Competitiveness Improvement Program and conducted under the scientific supervision of Prof. Marina Trusova, the Research School of Chemistry & Applied Biomedical Sciences.

The Research School of Chemistry & Applied Biomedical Sciences implements more than ten various projects on the development of hybrid materials, combining different properties. One of these areas is the development of highly sensitive sensor systems.

Sensors are a multilayer construction: they are based on a thin, wavy gold film 1x0.5 cm in size, which is modified with diazonium salts, special organic compounds.

Due to the developments of the TPU research team, the sensor can detect toxic substances, heavy metals, and some diseases and defects in the DNA structure. The advantages of hybrid sensors are hypersensitivity, the speed of analysis and the ability to analyze at the sampling site.

Media Contact

Vitalii Sdelnikov
Sdelnikov@tpu.ru
892-343-60344

 @TPUnews_en

http://www.tpu.ru/en 

Vitalii Sdelnikov | EurekAlert!
Further information:
https://news.tpu.ru/en/news/2019/10/23/35408/
http://dx.doi.org/10.1016/j.bios.2019.111718

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>