Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make neural networks successfully detect DNA damage caused by UV radiation

25.10.2019

Researchers of Tomsk Polytechnic University jointly with the University of Chemistry and Technology (Prague) conducted a series of experiments, which proved that artificial neural networks can accurately identify DNA damages caused by UV radiation.

According to the authors, the ways the UV could affect the DNA structure, especially with the short-term irradiation, remain practically unstudied. The UV radiation is also known to cause cancer. However, it is almost impossible to detect minor changes in the DNA structure.


This is a schematic diagram of the SERS sensor operation in combination with the neural network for the analysis of DNA damage.

Credit: Tomsk Polytechnic University

"In the article Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage, we offer an alternative to well-known techniques. We used model samples such as oligonucleotides of various sequences. Some of them were irradiated with UV for different periods of time. Then, we used highly sensitive sensor systems developed by the research team based on plasmon-polariton gold gratings. The oligonucleotides were immobilized on the sensor surface. They subsequently were hybridized with the irradiated oligonucleotides. Then, the changes in the DNA structure were analyzed using a Raman spectrometer, " Pavel Postnikov, Associate Prof. of the TPU Research School of Chemistry & Applied Biomedical Sciences, says.

He also noticed that the obtained spectra were used to train artificial neural networks. The analysis and interpretation of the oligonucleotide sequence spectra is quite a complex task, especially if it is large-scale and performed with a high level of statistics processing.

"Using neural networks enabled to avoid the numerical processing of a huge number of spectra and it freed us from the optimization of measurement procedure. Besides, the neural networks both reveal the damages and effectively predict changes in the DNA structure caused by UV radiation.

Moreover, the neural network in combination with the surface-enhanced Raman spectroscopy can detect changes with high accuracy, where traditional methods fail", - Pavel Postnikov says.

The researchers believe that the neural networks and Raman spectroscopy can be successfully used for medical diagnostics in the future. Moreover, this technique can be further improved.

"Analysis of biological objects by Raman spectroscopy methods is still an extremely difficult, but interesting and promising issue. In this regard, DNA damages caused by the UV radiation was an extremely interesting model for us.

This concept provides the detecting of minor changes in the DNA structure. It can be expanded and improved, " - Pavel Postnikov underlines. He also specifies, that the studies are supported by a grant under the TPU Competitiveness Improvement Program and conducted under the scientific supervision of Prof. Marina Trusova, the Research School of Chemistry & Applied Biomedical Sciences.

The Research School of Chemistry & Applied Biomedical Sciences implements more than ten various projects on the development of hybrid materials, combining different properties. One of these areas is the development of highly sensitive sensor systems.

Sensors are a multilayer construction: they are based on a thin, wavy gold film 1x0.5 cm in size, which is modified with diazonium salts, special organic compounds.

Due to the developments of the TPU research team, the sensor can detect toxic substances, heavy metals, and some diseases and defects in the DNA structure. The advantages of hybrid sensors are hypersensitivity, the speed of analysis and the ability to analyze at the sampling site.

Media Contact

Vitalii Sdelnikov
Sdelnikov@tpu.ru
892-343-60344

 @TPUnews_en

http://www.tpu.ru/en 

Vitalii Sdelnikov | EurekAlert!
Further information:
https://news.tpu.ru/en/news/2019/10/23/35408/
http://dx.doi.org/10.1016/j.bios.2019.111718

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
14.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>