Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Illuminate Mechanisms that Regulate DNA Damage Control, Replication

07.01.2009
Scientists at Burnham Institute for Medical Research (Burnham) have demonstrated important new roles for the protein kinase complex Cdc7/Dbf4 or Cdc7/Drf1 (Ddk) in monitoring damage control during DNA replication and reinitiating replication following DNA repair.

Since Ddk is often deregulated in human cancers, this new understanding of its role in DNA damage control could help shape new cancer therapies. The research was published in the December 24 issue of Molecular Cell.

Accurate DNA replication is essential for maintaining the stability of the genome. When errors occur, replication halts through a quality control process called the S-phase checkpoint. Replication is only restarted after the errors have been repaired. One of several proteins required for DNA replication, Ddk has long been thought to play an important role in the S-phase checkpoint, despite the lack of definitive evidence. In this study, Burnham researchers show that Ddk actively controls S-phase checkpoint signaling and plays a crucial role in triggering the re-initiation of DNA replication once damage has been repaired.

“This protein kinase complex is not only monitoring DNA replication, it’s also monitoring the S-phase checkpoint,” says Wei Jiang, Ph.D., the study’s principal investigator. “If replication is accurate, then Ddk allows DNA synthesis to continue normally. If there is DNA damage, replication is halted at this checkpoint. The most important thing is to stop replication in order to allow for DNA repair and to avoid catastrophe for the cell. Our study demonstrates that Ddk not only activates the initiation of DNA replication, but it also monitors the checkpoint during DNA damage control and eventually overrides the checkpoint to re-initiates DNA replication.”

These findings suggest a highly complex role for Ddk in DNA replication, S-phase checkpoint monitoring and DNA replication re-initiation after repair. The roles of Ddk in controlling the DNA replication machinery for genome stability and fidelity may make it an excellent target for the development of new cancer treatments.

This study, performed by Toshiya Tsuji, Ph.D. and Eric Lau, Ph.D. from the Jiang laboratory in collaboration with Gary Chiang, Ph.D., was funded by a grant from the National Institutes of Health.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest growing research institutes in the country. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>