Researchers Identify Transformation in Low-Temperature Water

Through a simulation performed in “supercooled” water, a research team led by chemist Feng “Seymour” Wang, confirmed a “liquid-liquid” phase transition at 207 Kelvins, or 87 degrees below zero on the Fahrenheit scale.

The properties of supercooled water are important for understanding basic processes during cryoprotection, which is the preservation of tissue or cells by liquid nitrogen so they can be thawed without damaged, said Wang, an associate professor in the department of chemistry and biochemistry in the J. William Fulbright College of Arts and Sciences.

“On a miscrosecond time scale, the water did not actually form ice but it transformed into a new form of liquid,” Wang said. “The study provides strong supporting evidence of the liquid-liquid phase transition and predicted a temperature of minimum density if water can be cooled well below its normal freezing temperature. Our study shows water will expand at a very low temperature even without forming ice.”

The findings were published online July 8 in the journal Proceedings of the National Academy of Sciences. Wang wrote the article, “Liquid–liquid transition in supercooled water suggested by microsecond simulations.” Research associates Yaping Li and Jicun Li assisted with the study.

The liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. Direct experimental veri?cation of such a phase transition had not been accomplished, and theoretical studies from different simulations contradicted each other, Wang said.

The University of Arkansas research team investigated the liquid–liquid phase transition using a simulation model called Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). While normal water is a high-density liquid, the low-density liquid emerged at lower temperatures, according to the simulation.

The research was supported by a National Science Foundation Faculty Early Career Development Award and by a startup grant from the U of A. The University of Arkansas High Performance Computing Center provided the main computational resource for the study.

Contact:

Feng Wang, associate professor
chemistry and biochemistry
469-575-5625, fengwang@uark.edu

Media Contact

Chris Branam Newswise

More Information:

http://www.uark.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors