Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein involved in causing gum disease, osteoporosis, arthritis

01.09.2009
Investigators at Hospital for Special Surgery, collaborating with researchers from other institutions, have contributed to the discovery that a gene called interferon regulator factor-8 (IRF-8) is involved in the development of diseases such as periodontitis (gum disease), rheumatoid arthritis and osteoporosis. The study, which will be published online August 30, ahead of print, in the journal Nature Medicine, could lead to new treatments in the future.

"The study doesn't have immediate therapeutic applications, but it does open a new avenue of research that could help identify novel therapeutic approaches or interventions to treat diseases such as periodontitis, rheumatoid arthritis or osteoporosis," said Baohong Zhao, Ph.D., lead author of the study and a research fellow in the Arthritis and Tissue Degeneration Program at Hospital for Special Surgery located in New York City.

Dr. Zhao initiated the study while working in the laboratory led by Drs. Masamichi Takami and Ryutaro Kamijo at Showa University, Tokyo, where much of the work was performed. Dr. Zhao completed the study and extended the work to human cells during the past year at Hospital for Special Surgery working with Dr. Lionel Ivashkiv.

Specifically, the researchers discovered that downregulation of IRF-8 (meaning that the gene produces less IRF-8 protein) increases the production of cells called osteoclasts that are responsible for breaking down bone. An osteoblast is a type of cell that is responsible for forming bone and an osteoclast is a type of cell that breaks down bony tissue (bone resorption). In humans and animals, bone formation and bone resorption are closely coupled processes involved in the normal remodeling of bone. Enhanced development of osteoclasts, however, can create canals and cavities that are hallmarks of diseases such as periodontitis, osteoporosis and rheumatoid arthritis.

Previous researchers have spent time identifying genes that are upregulated during enhanced development of osteoclasts, such as NFATc1, but few studies have identified genes that are downregulated in the process. To fill this knowledge gap, scientists at Hospital for Special Surgery, collaborating with researchers at other institutions, used microarray technology to conduct a genome-wide screen to identify genes that are downregulated during the formation of osteoclasts. They found that expression of IRF-8 was reduced by 75 percent in the initial phases of osteoclast development.

The researchers then genetically engineered mice to be deficient in IRF-8 and gave the animals x-rays and CT (computed tomography) scans to analyze IRF-8's influence on bone. They found that the mice had decreased bone mass and severe osteoporosis. Experiments demonstrated that this was due not to a decreased number of osteoblasts, but because of an increased number of osteoclasts. The researchers concluded that IRF-8 suppresses the production of osteoclasts.

Tests in human cells confirmed these findings. This included a study that showed that silencing IRF-8 messenger RNA in human osteoclast precursors with small interfering RNAs resulted in enhanced osteoclast production. In other words, decreased IRF-8 means more osteoclasts are produced.

This led the investigators to examine the effect of IRF-8 on the activity of a protein called NFATc1 that was previously reported to interact with IRF-8. They found that IRF-8 inhibited the function and expression of NFATc1. This makes sense given that upregulation of NFATc1 is involved in triggering osteoclast precursor cells to turn into osteoclasts.

"This is the first paper to identify that IRF-8 is a novel key inhibitory factor in osteoclastogenesis [production of osteoclasts]," said Dr. Zhao. "We hope that the understanding of this gene can contribute to understanding the regulatory network of osteoclastogenesis and lead to new therapeutic approaches in the future."

Other authors involved in the study are Masamichi Takami, Ph.D., Atsushi Yamada, Ph.D., Xiaogu Wang, Ph.D., and Ryutaro Kamijo, Ph.D., from Showa University in Tokyo, Japan; Takako Koga, Ph.D., and Hiroshi Takayanagi, M.D., Ph.D., from Tokyo Medical and Dental University and the International Research Center for Molecular Science in Tooth and Bone Disease, both in Japan; Xiaoyu Hu, M.D., Ph.D., and Lionel Ivashkiv, M.D., from Hospital for Special Surgery; Tomohiko Tamura, M.D., Ph.D., and Keiko Ozato, Ph.D., from the National Institutes of Health; and Yongwon Choi, Ph.D., from the University of Pennsylvania School of Medicine.

The work was supported by in part by the High-Tech Research Center Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology in Japan; by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science; and by grants from the U.S. National Institutes of Health.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 2 in orthopedics, No. 3 in rheumatology and No. 24 in neurology by U.S. News & World Report (2009), and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center. In 2008 and 2007, HSS was a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>