Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify mechanism used by gene to promote metastasis in human cancer cells

01.10.2008
Virginia Commonwealth University Institute of Molecular Medicine and VCU Massey Cancer Center researchers have discovered how a gene, melanoma differentiation associated gene-9/syntenin (mda-9/syntenin), interacts with an important signaling protein to promote metastasis in human melanoma cells, a discovery that could one day lead to the development of the next generation of anti-metastatic drugs for melanoma and other cancers.

Metastatic disease is one of the primary challenges in cancer therapy. When cancer cells are localized in the body, specialists may be able to surgically remove the diseased area. However, when cancer metastasizes or spreads to sites remote from the primary tumor through the lymph system and blood vessels to new target sites, treatment becomes more difficult and in many instances ineffective.

Previous studies have shown that mda-9/syntenin regulates cell motility and can alter certain biochemical and signaling pathways leading to acquisition of metastatic ability. However, the exact mechanisms involved with these processes have not been well understood until now.

In the study, published online the week of Sept. 29 in the Early Edition of the Proceedings of the National Academy of Sciences, researchers report on the molecular mechanisms by which mda-9/syntenin is able to mediate invasion, migration, anchorage-independent growth and metastasis by physically interacting with c-Src, a key signaling protein involved with tumor cell growth and metastasis.

The team examined human cancer cells in the laboratory using a relevant human melanoma metastasis model and discovered how mda-9/syntenin was able to activate, or switch-on, the expression of c-Src. The expression of c-Src led to an increase in the formation of an active FAK/c-Src signaling complex. According to the researchers, this interaction triggers a signaling cascade resulting in increased cancer cell motility, invasion and metastasis.

"Mda-9/syntenin may represent a potential new molecular target for melanoma therapy that could be used to develop therapeutic reagents for treating this cancer as well as other cancers originating in the breast and stomach," said Paul B. Fisher, M.Ph., Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

"By disrupting the interaction between mda-9/syntenin and c-Src, it may be possible to prevent metastasis by blocking those signaling changes necessary for this process," he said.

According to Fisher, using this strategy it may be possible to identify compounds that serve this function and are effective therapeutic molecules for counteracting this final and frequently lethal stage of tumor progression.

The team will conduct further investigations to determine if small molecule drugs can be identified and developed to prevent metastasis by targeting this critical interaction between mda-9/syntenin and c-Src. Further studies are also in progress to determine how general these interactions are in mediating metastasis of other human tumors in addition to melanoma.

Sathy Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>