Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new genetics risks for Alzheimer's disease

13.11.2013
An International study examined the genome of more than 74,000 individuals

An international research consortium with the participation of the German Center for Neurodegenerative Diseases (DZNE) and the Bonn University Hospital has identified 11 previously unknown genetic risk factors for Alzheimer's disease.

The genome of over 25,000 patients as well as more than 48,000 healthy controls was analyzed to this end. The results have been published in the scientific journal “Nature Genetics”.

Alzheimer’s disease is a common cause of dementia. It is triggered by the death of brain cells and occurs in two variants: The so-called familial variant is relatively rare. It is caused by certain mutations in the genome and usually manifests itself already before the age of 65. However, more than 90 percent of the cases occur at an older age. The exact causes of this “sporadic” form of the disease are enigmatic. However, it is known that a disease may be favored by genetic traits, even though it may not necessarily be triggered by it.

So far, 11 such risk factors were known. A further 11 have now been identified by a team of researchers from the US and Europe. For this several universities and research institutions collaborated within the framework of the “International Genomics of Alzheimer's Project” (IGAP).

Large amounts of data

“Such an endeavor is enormously complex and requires the cooperation of many partners. We in particular contributed clinical data. This included anonymous genetic data of about one thousand patients that are diagnosed with Alzheimer’s disease,” says Dr. Alfredo Ramirez, who is a researcher at the Department of Psychiatry and Psychotherapy of Bonn University Hospital.

The memory clinic played an important role, explains Professor Frank Jessen, who is Deputy Director of the Department of Psychiatry and Psychotherapy and also a researcher affiliated to the DZNE: “Longtime preparations are needed for such a study. On the basis of our memory clinic we have been in touch with people diagnosed with memory disorders for many years. Through this we have been able to build up an extensive repository of genetic data from patients. We made this data available for the study.”

“In the case of such genetic studies, it is ultimately a matter of comparing the genomes of patients and controls,” explains Dr. Tim Becker from the Bonn site of the DZNE. Within the framework of the now published study he focused in particular on the analysis of genetic data. “We searched for genetic traits that are prevalent in persons that have been diagnosed with the disease. In order to do so, genetic data from many people has to be compared. This is the only way to obtain meaningful results and to distinguish random signals from real findings.”

Important contributions also came from the Institute of Human Genetics of the Bonn University Hospital. “We genotyped samples of DNA. This is very similar to doing genetic fingerprinting,” says Professor Markus Nöthen, head of the Institute.

Screening the genome

The IGAP consortium studied the genome of a total of 74,046 people. Of these, more than 25,000 were diagnosed with Alzheimer’s disease, the others were controls. High performance computing assisted in the analysis of the huge amount of data.

Pivotal to the research were so-called genome-wide association studies (GWAS). The genome, with its billions of building blocks, was thereby not fully cataloged, but instead only examined at relevant positions. This type of screening saves time and money, while at the same time providing a good coverage. The researchers examined about seven million positions.

Critical positions

“We identified eleven positions in the human genome that were previously largely ignored. However, if certain alterations are present there, the probability of developing Alzheimer’s increases,” says Becker. “Yet, this increased risk does not necessarily lead to disease.”

So far the researchers do not yet know in detail what role the affected regions play. “Some of these genes are related to Amyloid-beta and tau proteins that are known to be relevant for the Alzheimer’s disease. With regard to the other critical regions, we can not say with certainty what role they play”, says Ramirez. “We assume that they have an effect, for example, on nervous connections and on transport processes occurring inside the nerve cells. In addition, the immune system seems to be involved. As a next step, it will be important to investigate this in more detail.”

Original publication
“Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease”, Nature Genetics, published online on October 27, 2013, http://dx.doi.org/10.1038/ng.2802

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>