Researchers identify gene variant linked to glaucoma

The study by Kang Zhang, MD, PhD, Director of the Institute for Genomic Medicine and professor of ophthalmology and human genetics at the Shiley Eye Center at UC San Diego and J. Fielding Hejtmancik, MD, PhD, medical officer and chief of the Ophthalmic Molecular Genetics Section at the National Eye Institute, National Institutes of Health, along with the Barbados Family Study Group and colleagues in the United States, China and Barbados, will be published in the early online edition of the Proceedings of the National Academy of Science (PNAS) the week of September 21.

Glaucoma is the leading cause of blindness among blacks, affecting close to five percent of the population. The researchers chose to conduct the study in the Afro-Caribbean population of Barbados, where the incidence of glaucoma is double that figure – nearly 10 percent of all residents of the island – and where there is a strong genetic predisposition.

Known as “the silent thief of sight,” glaucoma is a neurodegenerative disease that causes the death of ganglion cells of the retina, resulting in gradual and irreversible loss of peripheral vision. Reducing intra-ocular pressure can slow the progression to blindness, but there is no cure or reversal for glaucoma.

“The cause and progression of glaucoma are poorly understood, although we know there is a strong genetic predisposition to the disease,” said co-author Robert N. Weinreb, MD, Director of the Hamilton Glaucoma Center and Distinguished Professor of Ophthalmology at UC San Diego.

“We have now identified very common gene variants that have a dramatic impact on an individual's risk for developing glaucoma,” Zhang added. “These gene variants are present in 40 percent of individuals with glaucoma in the Barbados population and explains nearly one-third of their genetic risk for the disease. This study should give us a better handle on earlier diagnoses and new therapies.”

Looking at 249 patients with glaucoma and 128 control subjects, the research built on early studies which scanned the entire human genome. The scientists then homed in on a particular segment of the human genome, and finally localized the gene on chromosome 2.

“Once we understand the specific gene or protein structure that is altered in the disease, we are one step closer to developing gene or stem cell-based therapies to treat glaucoma,” said Zhang. Identifying the gene variants can also provide a more accurate and earlier diagnosis, allowing early intervention to slow glaucoma's progression.

Additional contributors to the study include researchers at the University of Utah; Yale University; Stony Brook University; University of the West Indies; Qingdao University, Qingdao, China; Sichuan Provincial People's Hospital, China; and West China Hospital, Sichuan University.

This work was supported by grants from the National Eye Institute of National Institutes of Health, Research to Prevent Blindness and the Burroughs Wellcome Fund.

Media Contact

Debra Kain EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors