Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Gene Linked to Aggressive Progression of Liver Cancer

19.02.2009
Virginia Commonwealth University researchers have identified a gene that plays a key role in regulating liver cancer progression, a discovery that could one day lead to new targeted therapeutic strategies to fight the highly aggressive disease.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study, published online in the February issue of the Journal of Clinical Investigation, researchers reported that the astrocyte elevated gene-1, AEG-1, plays a key role in regulating HCC in series of cellular models. By examining human liver tumor cells of patients with HCC, the team found that the expression of AEG-1 gradually increases as the tumor becomes more and more aggressive. Using microarray technology, they analyzed cDNA from the tumor cells and determined that AEG-1 modulates expression of genes relevant to the progression of HCC, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels, and senescence. cDNAs are complementary DNAs that are generated from mRNAs to analyze gene expression profiles.

“AEG-1 also activates multiple intracellular signaling pathways that are known to be involved in HCC progression. So, strategies to inhibit AEG-1 that could lead to the shutdown of these pathways, either by small molecules or by siRNAs, might be an important therapeutic modality for HCC patients,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center.

siRNAs are small inhibitory RNAs that can specifically inhibit targeted mRNA and protein production. siRNAs may be used in the future for targeted inhibition of AEG-1 in patients, Sarkar said.

According to Sarkar, the team found a significantly higher expression of AEG-1 protein in more than 90 percent of tumor samples from HCC patients compared to normal human liver cells.

“The expression of AEG-1 protein gradually increases as the disease becomes more aggressive. No other genes have been shown to be upregulated in such a high percentage of HCC patients,” said Sarkar.

Further, he said that findings from a separate pool of 132 HCC patients revealed significant overexpression of AEG-1 mRNA compared to normal liver. In a subset of these patients, the team detected an increased number of copies of the AEG-1 gene.

“We observed an increase in AEG-1 DNA, mRNA and protein in HCC patients, which indicates a significant involvement of AEG-1 in HCC progression. Stable overexpression of AEG-1 converts non-tumorigenic human HCC cells into highly aggressive vascular tumors and inhibition of AEG-1 abrogates tumorigenesis by aggressive HCC cells,” he said.

Previous studies suggest that the expression of AEG-1 is very low in normal cells or tissues such as breast, prostate and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased.

The team will conduct studies to further understand the molecular mechanisms by which AEG-1 works and identify other proteins with which it interacts.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, the Spanish National Health Institute, and the Samuel Waxman Cancer Research Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers, Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Nitai D. Mukhopadhyay, Ph.D., Alan Scott Mills, M.D., Robert A. Fisher, M.D., and Paul B. Fisher, M.Ph., Ph.D.; Luni Emdad Ph.D., Augusto Villanueva, Ph.D., Samuel Waxman, M.D., Josep M. Llovet, M.D., all from the Mount Sinai School of Medicine in New York; and Derek Y Chiang, Ph.D., with the Broad Institute of Harvard and MIT. Sarkar and Paul B. Fisher are the founding members of the VCU Institute of Molecular Medicine, which also provided support in conducting these studies.

About VCU and the VCU Medical Center:
Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.jci.org/articles/view/36460
http://www.vcu.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>