Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Gene Linked to Aggressive Progression of Liver Cancer

19.02.2009
Virginia Commonwealth University researchers have identified a gene that plays a key role in regulating liver cancer progression, a discovery that could one day lead to new targeted therapeutic strategies to fight the highly aggressive disease.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study, published online in the February issue of the Journal of Clinical Investigation, researchers reported that the astrocyte elevated gene-1, AEG-1, plays a key role in regulating HCC in series of cellular models. By examining human liver tumor cells of patients with HCC, the team found that the expression of AEG-1 gradually increases as the tumor becomes more and more aggressive. Using microarray technology, they analyzed cDNA from the tumor cells and determined that AEG-1 modulates expression of genes relevant to the progression of HCC, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels, and senescence. cDNAs are complementary DNAs that are generated from mRNAs to analyze gene expression profiles.

“AEG-1 also activates multiple intracellular signaling pathways that are known to be involved in HCC progression. So, strategies to inhibit AEG-1 that could lead to the shutdown of these pathways, either by small molecules or by siRNAs, might be an important therapeutic modality for HCC patients,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center.

siRNAs are small inhibitory RNAs that can specifically inhibit targeted mRNA and protein production. siRNAs may be used in the future for targeted inhibition of AEG-1 in patients, Sarkar said.

According to Sarkar, the team found a significantly higher expression of AEG-1 protein in more than 90 percent of tumor samples from HCC patients compared to normal human liver cells.

“The expression of AEG-1 protein gradually increases as the disease becomes more aggressive. No other genes have been shown to be upregulated in such a high percentage of HCC patients,” said Sarkar.

Further, he said that findings from a separate pool of 132 HCC patients revealed significant overexpression of AEG-1 mRNA compared to normal liver. In a subset of these patients, the team detected an increased number of copies of the AEG-1 gene.

“We observed an increase in AEG-1 DNA, mRNA and protein in HCC patients, which indicates a significant involvement of AEG-1 in HCC progression. Stable overexpression of AEG-1 converts non-tumorigenic human HCC cells into highly aggressive vascular tumors and inhibition of AEG-1 abrogates tumorigenesis by aggressive HCC cells,” he said.

Previous studies suggest that the expression of AEG-1 is very low in normal cells or tissues such as breast, prostate and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased.

The team will conduct studies to further understand the molecular mechanisms by which AEG-1 works and identify other proteins with which it interacts.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, the Spanish National Health Institute, and the Samuel Waxman Cancer Research Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers, Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Nitai D. Mukhopadhyay, Ph.D., Alan Scott Mills, M.D., Robert A. Fisher, M.D., and Paul B. Fisher, M.Ph., Ph.D.; Luni Emdad Ph.D., Augusto Villanueva, Ph.D., Samuel Waxman, M.D., Josep M. Llovet, M.D., all from the Mount Sinai School of Medicine in New York; and Derek Y Chiang, Ph.D., with the Broad Institute of Harvard and MIT. Sarkar and Paul B. Fisher are the founding members of the VCU Institute of Molecular Medicine, which also provided support in conducting these studies.

About VCU and the VCU Medical Center:
Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.jci.org/articles/view/36460
http://www.vcu.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>