Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers grow penicillin-producing fungi with new properties through sexual reproduction

08.01.2013
Darkness, oxygen deprivation, and vitamin make fungus “crave sex”
Unlike we thought for 100 years: moulds are able to reproduce sexually

For over 100 years, it was assumed that the penicillin-producing mould fungus Penicillium chrysogenum only reproduced asexually through spores. An international research team led by Prof. Dr. Ulrich Kück and Julia Böhm from the Chair of General and Molecular Botany at the Ruhr-Universität has now shown for the first time that the fungus also has a sexual cycle, i.e. two “genders”.


Scanning electron microscopic image of asexual conidiospores from the penicillin producer Penicillium chrysogenum
Image: Chair of General and Molecular Botany, RUB

Through sexual reproduction of P. chrysogenum, the researchers generated fungal strains with new biotechnologically relevant properties - such as high penicillin production without the contaminating chrysogenin. The team from Bochum, Göttingen, Nottingham (England), Kundl (Austria) and Sandoz GmbH reports in PNAS. The article will be published in this week’s Online Early Edition and was selected as a cover story.

Only penicillin producer

About 100 years ago, Alexander Fleming demonstrated the formation of penicillin in Penicillium chrysogenum. To date, there is no other known producer of the antibiotic penicillin, which has an annual global market value of about six billion Euros.

Combining genes and breeding offspring with new properties

Not only animals and plants, but also many microorganisms such as fungi and algae can reproduce sexually. The advantage: the progenies possess a combination of genes from both mating partners and thus have new properties. Sexual reproduction in fungi is, however, not the rule. Most reproduce via spores which, in the case of moulds, occur as white, green or black deposits on spoiled food. These spores only bear the genes of one parent fungus.

“Five years ago we already detected the existence of so-called sex genes in Penicillium chrysogenum“, says Prof. Kück. Now, the researchers have discovered specific environmental conditions in which the fungus actually reproduces sexually. The decisive thing was to breed fungal strains in the dark under oxygen deprivation conditions in a nutrient medium supplemented with the vitamin biotin. The offspring exhibited new properties, both at the molecular level, as well as in their phenotypes.

Results could be applicable to other fungi

Using so-called microarray analysis, the biologists also investigated the activity of all the approximately 12,000 genes of the mould fungus. The result: the sex genes control the activity of biologically relevant genes, for example those for penicillin production.

“We presume that the findings can also be applied to other fungi”, says Ulrich Kück, “such as Penicillium citrinum and Aspergillus terreus that produce cholesterol-lowering statins, or Penicillium brevicompactum and Tolypocladium inflatum, which produce immunosuppressives that are used in all organ transplantations”. The researchers conducted the work in the Christian Doppler Laboratory “Biotechnology of Fungi” at the Ruhr-Universität with funding from the Christian Doppler Society (Vienna).

Bibliographic record

J. Böhm, B. Hoff, C.M. O’Gorman, S. Wolfers, V. Klix, D. Binger, I. Zadra, H. Kürnsteiner, S. Pöggeler, P.S. Dyer, U. Kück (2013): Sexual reproduction and mating-type – mediated strain development in the penicillin-producing fungus Penicillium chrysogenum, PNAS, DOI: 10.1073/pnas.1217943110

Further information

Prof. Dr. Ulrich Kück, Chair of General and Molecular Botany, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28212, E-Mail: Ulrich.Kueck@rub.de

Julia Böhm, MSc, Chair of General and Molecular Botany, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-25656, E-Mail: Julia.Boehm@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>