Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Gain Fuller Picture of Cell Protein Reactions

21.11.2013
Unique peptide array technology provides fast, low-cost, label-free method for understanding processes that modulate platelet production

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells’ behavior is the result of post-transcriptional processes, events that occur after DNA is transcribed, carried out by complex enzyme interactions within the cell.


Northwestern researchers have used a process called SAMDI mass spectrometry to analyze the enzyme reactions within cells.

The roles that enzymes play in regulating cell behavior have been incompletely understood, largely because researchers have lacked the proper tools to measure the many simultaneous reactions in a cell.

Northwestern University researchers have recently developed a new technique for profiling enzyme activities in cell lysate, a fluid containing the internal contents of cells. The process uses surfaces that present an array of peptides that each interact with enzymes in a lysate. The changes the enzymes make to the peptides can be directly read using a laser to determine the changes in mass of those peptides.

... more about:
»DNA »Protein »SAMDI »bone marrow »cell death

A paper about the research, “Profiling Deacetylase Activities in Cell Lysates with Peptide Arrays and SAMDI Mass Spectrometry,” was published as an Editors’ Highlight in the November 19 issue of Analytical Chemistry.

William Miller, professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and Applied Science, initiated the project to find new methods for growing blood platelets in cultures. (Transfusions of platelets — tiny cells in the blood that promote clotting — can prevent complications from bleeding, but maintaining supplies of the cells is challenging because several donors are often required to collect one transfusion and samples must be used within days.)

Researchers can grow platelets by differentiating blood stem cells into megakaryocytes, the cells in bone marrow that produce platelets, but the process falls far short of nature. In humans, megakaryocytes undergo DNA replication without cell division to form giant cells that extend processes called proplatelets and produce thousands of platelets, but in culture they produce fewer than 10 because the cells do not get as large and many die before they release platelets.

In an earlier study, Miller and his collaborators found that inhibiting a certain family of enzymes helped promote differentiation, resulting in larger megakaryocytes and more extensive proplatelet formation.

Miller’s colleague, Milan Mrksich, the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry, and Cell and Molecular Biology at McCormick, had been developing bioanalytical techniques for just this type of problem. The two partnered to profile a cell line model of the bone marrow cells that produce platelets.

“If we understand the enzyme activities that occur during megakaryocyte differentiation, it may be possible to prevent or promote differentiation for platelet production and other purposes,” Miller said.

Using Mrksich’s unique process of self-assembled monolayers desorption ionization (SAMDI) mass spectrometry, a super-fast, low-cost, and “label-free” method of measuring biochemical activities on a surface, the researchers were able to identify patterns of enzyme activities in cell lysates.

The researchers focused on histone deacetylase enzymes, a family of 17 enzymes that remove acetyl groups from certain proteins. They found that global deacetylase activity decreased significantly during differentiation, and that the decrease could be attributed to the sirtuin class comprising six deacetylases. The activities of the other 11 “classical” deacetylases did not substantially change.

Traditionally, discovering protein function has been a slow, tedious process of trial and error. Current methods use labels — chemical additives that leave their mark in a reaction, such as radioactivity or fluorescence — to determine whether a protein is active in a reaction. But labels can only test to see whether a specific reaction is occurring, which limits potential discoveries.

Using SAMDI mass spectrometry, the researchers separately tethered hundreds of different acetylated peptides to a gold-plated surface, then introduced lysate to see if a reaction would occur. When the reaction was complete, the plate was struck with a laser that released the peptides from the gold base. The contents of each site were weighed, allowing researchers to make an educated assumption about what occurred in each reaction.

“Until now, measuring the activity of enzymes in cell lysate has been a tremendous challenge because lysates contain tens of thousands of different molecules,” Mrksich said. “With SAMDI mass spectrometry, we can use arrays having thousands of peptides to identify those many activities, and through sophisticated analysis we obtain a global picture of how complex cell functions are regulated.”

In addition to Miller and Mrksich, other authors of the paper include co-first authors Hsin-Yu Kuo and Teresa A. DeLuca, both graduate students at Northwestern.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Protein SAMDI bone marrow cell death

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>