Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Gain Fuller Picture of Cell Protein Reactions

21.11.2013
Unique peptide array technology provides fast, low-cost, label-free method for understanding processes that modulate platelet production

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells’ behavior is the result of post-transcriptional processes, events that occur after DNA is transcribed, carried out by complex enzyme interactions within the cell.


Northwestern researchers have used a process called SAMDI mass spectrometry to analyze the enzyme reactions within cells.

The roles that enzymes play in regulating cell behavior have been incompletely understood, largely because researchers have lacked the proper tools to measure the many simultaneous reactions in a cell.

Northwestern University researchers have recently developed a new technique for profiling enzyme activities in cell lysate, a fluid containing the internal contents of cells. The process uses surfaces that present an array of peptides that each interact with enzymes in a lysate. The changes the enzymes make to the peptides can be directly read using a laser to determine the changes in mass of those peptides.

... more about:
»DNA »Protein »SAMDI »bone marrow »cell death

A paper about the research, “Profiling Deacetylase Activities in Cell Lysates with Peptide Arrays and SAMDI Mass Spectrometry,” was published as an Editors’ Highlight in the November 19 issue of Analytical Chemistry.

William Miller, professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and Applied Science, initiated the project to find new methods for growing blood platelets in cultures. (Transfusions of platelets — tiny cells in the blood that promote clotting — can prevent complications from bleeding, but maintaining supplies of the cells is challenging because several donors are often required to collect one transfusion and samples must be used within days.)

Researchers can grow platelets by differentiating blood stem cells into megakaryocytes, the cells in bone marrow that produce platelets, but the process falls far short of nature. In humans, megakaryocytes undergo DNA replication without cell division to form giant cells that extend processes called proplatelets and produce thousands of platelets, but in culture they produce fewer than 10 because the cells do not get as large and many die before they release platelets.

In an earlier study, Miller and his collaborators found that inhibiting a certain family of enzymes helped promote differentiation, resulting in larger megakaryocytes and more extensive proplatelet formation.

Miller’s colleague, Milan Mrksich, the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry, and Cell and Molecular Biology at McCormick, had been developing bioanalytical techniques for just this type of problem. The two partnered to profile a cell line model of the bone marrow cells that produce platelets.

“If we understand the enzyme activities that occur during megakaryocyte differentiation, it may be possible to prevent or promote differentiation for platelet production and other purposes,” Miller said.

Using Mrksich’s unique process of self-assembled monolayers desorption ionization (SAMDI) mass spectrometry, a super-fast, low-cost, and “label-free” method of measuring biochemical activities on a surface, the researchers were able to identify patterns of enzyme activities in cell lysates.

The researchers focused on histone deacetylase enzymes, a family of 17 enzymes that remove acetyl groups from certain proteins. They found that global deacetylase activity decreased significantly during differentiation, and that the decrease could be attributed to the sirtuin class comprising six deacetylases. The activities of the other 11 “classical” deacetylases did not substantially change.

Traditionally, discovering protein function has been a slow, tedious process of trial and error. Current methods use labels — chemical additives that leave their mark in a reaction, such as radioactivity or fluorescence — to determine whether a protein is active in a reaction. But labels can only test to see whether a specific reaction is occurring, which limits potential discoveries.

Using SAMDI mass spectrometry, the researchers separately tethered hundreds of different acetylated peptides to a gold-plated surface, then introduced lysate to see if a reaction would occur. When the reaction was complete, the plate was struck with a laser that released the peptides from the gold base. The contents of each site were weighed, allowing researchers to make an educated assumption about what occurred in each reaction.

“Until now, measuring the activity of enzymes in cell lysate has been a tremendous challenge because lysates contain tens of thousands of different molecules,” Mrksich said. “With SAMDI mass spectrometry, we can use arrays having thousands of peptides to identify those many activities, and through sophisticated analysis we obtain a global picture of how complex cell functions are regulated.”

In addition to Miller and Mrksich, other authors of the paper include co-first authors Hsin-Yu Kuo and Teresa A. DeLuca, both graduate students at Northwestern.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Protein SAMDI bone marrow cell death

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>