Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Halle discover genetic basis for social behaviour in bees

15.05.2015

The social behaviour of bees depends on the highly complex interactions of multiple gene groups rather than on one single gene. This has been established by an international team of researchers that includes scientists from Martin Luther University Halle-Wittenberg (MLU). The researchers analysed and compared ten bee genomes in order to identify a common genetic basis for the social behaviour of different species of bees. Their research findings were published last evening in the renowned journal “Science”.

In the study, scientists from Europe, Asia and the Americas compared the genomes of ten species of bees that exhibit different degrees of social behaviour. "While several wild bees live their entire lives as solitary insects, other bees live in colonies with highly complex social structures, allowing for efficient division of labour," explains Professor Robin Moritz from the Institute of Biology at MLU.

The University of Illinois at Urbana-Champaign spearheaded the study in which numerous international research institutions including MLU also participated. The study's findings were published on Thursday evening in "Science". In the study, the scientists used five bee genomes that had already been sequenced, as well as the newly-sequenced genomes of five additional species of bees.

The researchers were astonished to find that the same genes aren't always active in complex social organisations. "There is no single gene that makes a bee social," says Moritz, summing up the study. Instead there are patterns in the regulatory networks that are responsible for the activity of different genes. These networks represent cascades of multiple genes that are switched on or off together: the more complex the bees' social organisation is, the larger is the network of the collectively regulated genes.

The researchers also discovered that, as the degree of social organisation increases, so too does the number of so-called transcription factor binding sites. These binding sites serve as the critical on and off switches for regulating complex gene cascades. Similarly, the methylation of genes also increases with increasing complexity of the social organisation as an additional mechanism to control whether a gene is activated or not.

In their work on the project, Robin Moritz's team of biologists in Halle examined the different bee genomes for so-called "jumping genes". "These DNA segments change position within the genome, in other words, jump to other genes and are able to deactivate them," explains Dr Michael Lattorff, who works at the Institute of Biology alongside Moritz.

The researchers found less of these elements in the socially complex bee species. It has yet to be conclusively determined whether this is the reason for their complex social organisation, or a result of it. Professor Martin Hasselmann from the University of Hohenheim and an alumnus of MLU was also a member of the international team. He and his team mainly looked at the genes involved in determining the gender of bees.

The research group led by Robin Moritz, Michael Lattorff and Martin Hasselmann also participated in other publications that appeared in the scientific journal "Genome Biology". In these studies they examined the genome and sequenced the DNA of the buff-tailed bumblebee (Bombus terrestris) and the common eastern bumblebee (Bombus impatiens), a native of North America. In one publication the researchers compared the DNA of both bumblebees to that of the closely related honeybee. Their other publication analysed the immune system of bumblebees and the genetic basis for their social behaviour.

Publications:

Kapheim et al. 2015. Genomic Signatures of Evolutionary Transitions from Solitary to Group Living. Science, 14.05.2015; DOI: 10.1126/science.aaa4788

Sadd et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization, Genome Biology, dx.doi.org/10.1186/s13059-015-0623-3

Barribeau et al. 2015. A depauperate immune repertoire precedes evolution of sociality in bees, Genome Biology, dx.doi.org/10.1186/s13059-015-0628-y

Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

Further reports about: Biology DNA Genome Biology bumblebees discover genes genetic basis genomes social behaviour

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>