Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find microbes key to reef survival

04.09.2017

In a paper published in the September 2017 issue of the journal Nature Climate Change, a consortium of marine biology researchers outline the mechanisms that might underlie adaptation to climate change in reef corals. Predicting the ability of coral reefs to survive changes in climate requires understanding coral animals--the foundation species of these ecosystems--and how parental provisioning, genetic and epigenetic mechanisms, and changes in the microbiome contribute to their adaptive response.

The marine biology researchers, from 11 institutions in five different countries, gathered at a recent workshop to assess the fate of coral reefs in the face of climate change.


Red Sea reefs are known for their remarkable coral cover and orange fish, Anthias species, swarming at the reef crests.

Credit: © 2016 Anna Roik

Participants at the conference included Gergely Torda and Philip Munday from the ARC Centre of Excellence for Coral Reef Studies, and Manuel Aranda, Michael Berumen, Timothy Ravasi and Christian Voolstra from King Abdullah University of Science and Technology (KAUST).

"The clock is ticking. If we look at the Great Barrier Reef, more than 30% of the corals may already be dead. Understanding these mechanisms is becoming increasingly important if we want to help these ecosystems. If not now, then when?" asked Aranda.

The health of the world's coral reefs is of particular concern because of their high social, ecological and economic value, as well as their sensitivity to environmental change. "Climate change is happening; oceans are warming and ocean chemistry is changing with detrimental effects on coral reefs," said Ravasi.

"All animals and plants associate with microbes and form so-called metaorganisms. In particular, coral metaorganisms rely on their microbial partners for survival. These microbes hold the promise to contribute to host physiology and can quickly adjust under changing environmental conditions, thereby helping the coral to adapt," said Voolstra.

The team focused on stony, reef-building corals, calling them "ecosystem engineers," because they form the framework of the reef, providing shelter, food and habitat for countless other living things. Loss of reef-building corals therefore leads to declines in the diversity and abundance of other reef organisms and ultimately the collapse of the entire ecosystem.

In their paper the team identified eight potential research directions that could help clarify how coral reefs might adapt or acclimatize to environmental change. The team advised researchers to explore different forms of plasticity in corals and other reef organisms using well-designed, strictly controlled experiments.

They also stressed the importance of demonstrating how epigenetic mechanisms and marks--the ability of the parent's environment to alter the gene expression of the offspring--relate to phenotypes in corals. They also emphasized the importance of understanding the relative contribution of parental provisioning, genetic and epigenetic mechanisms and changes in the microbiome to adaptive responses in corals. The other directions placed importance on developing model organisms, understanding the flexibility of coral-microbial associations, improving models of mechanism interaction, and determining the pace of genetic adaptation.

The concept of plastic responses and epigenetics are increasingly "hot" topics as the effects of climate change become more evident in ecosystems around the world.

"In these rapidly developing fields, it is important to occasionally step back and brainstorm with colleagues to share ideas, to discuss what has worked and what hasn't, and to identify the most promising directions to answer challenging questions," Berumen said. "This paper is the outcome of a very productive workshop and hopefully it will be useful as more and more people focus research efforts in these directions."

###

King Abdullah University of Science and Technology (KAUST)

KAUST advances science and technology through distinctive and collaborative research integrated with graduate education. Located on the Red Sea coast in Saudi Arabia, KAUST conducts curiosity-driven and goal-oriented research to address global challenges related to food, water, energy and the environment. Established in 2009, KAUST is a catalyst for innovation, economic development and social prosperity in Saudi Arabia and the world. The university currently educates and trains over 900 master's and doctoral students, supported by an academic community of 150 faculty members, 400 postdocs and 300 research scientists. With 100 nationalities working and living at KAUST, the university brings together people and ideas from all over the world. Visit kaust.edu.sa for more information.

Media Contact:

Michelle Ponto
Michelle.ponto@kaust.edu.sa
+966544701668

http://kaust.edu.sa/ 

Michelle Ponto | EurekAlert!

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>