Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible link between bacterium and colon cancer

18.10.2011
Scientists at Dana-Farber Cancer Institute and the Broad Institute have found strikingly high levels of a bacterium in colorectal cancers, a sign that it might contribute to the disease and potentially be a key to diagnosing, preventing, and treating it.

In a study published online in the journal Genome Research, investigators report the discovery of an abnormally large number of Fusobacterium cells in nine colorectal tumor samples. While the spike does not necessarily mean the bacterium helps cause colorectal cancer, it offers an enticing lead for further research, the study authors say.

The journal is also publishing a paper by researchers from the BC Cancer Agency and Simon Fraser University in Canada that reports similar findings from research conducted independently of the Dana-Farber/Broad Institute collaboration.

A confirmed connection between Fusobacterium and the onset of colorectal cancer would mark the first time any microorganism has been found to play a role in this type of cancer, which is the second leading cause of cancer deaths in the United States. The American Cancer Society estimates that colon cancer will cause more than 49,000 deaths in the U.S. this year, and more than 141,000 people will be diagnosed with the disease.

The discovery was made by sequencing the DNA within nine samples of normal colon tissue and nine of colorectal cancer tissue, and validated by sequencing 95 paired DNA samples from normal colon tissue and colon cancer tissue. Analysis of the data turned up unusually large amounts of Fusobacterium's signature DNA in the tumor tissue.

"Tumors and their surroundings contain complex mixtures of cancer cells, normal cells, and a variety of microorganisms such as bacteria and viruses," says the study's senior author, Matthew Meyerson, MD, PhD, of Dana-Farber and the Broad Institute. "Over the past decade, there has been an increasing focus on the relationship between cancer cells and their 'microenvironment,' specifically on the cell-to-cell interactions that may promote cancer formation and growth."

While the relationship – if any – between colorectal cancer and Fusobacterium is unclear, there are intriguing hints that the bacterium may play a role in the cancer, says Meyerson, who is co-director of the Center for Cancer Genome Discovery at Dana-Farber and a professor of pathology at Harvard Medical School. Previous studies have suggested that Fusobacterium is associated with inflammatory bowel diseases such as ulcerative colitis, which can raise people's risk of developing colon cancer.

"At this point, we don't know what the connection between Fusobacterium and colon cancer might be," Meyerson observes. "It may be that the bacterium is essential for cancer growth, or that cancer simply provides a hospitable environment for the bacterium. Further research is needed to see what the link is."

Researchers are embarking on comparison studies of Fusobacterium levels in larger numbers of patients with colorectal cancer and in those without the disease. Also planned are studies to determine whether the bacterium can be used to induce colon cancer in animal models.

The study's lead author is Aleksandar Kostic of the Broad Institute. Co-authors include Dirk Gevers, PhD, Ashlee Earl, PhD, Joonil Jung, PhD, and Bruce Birren, PhD, Broad Institute; Chandra Sekhar Pedamallu, PhD, Fujiko Duke, Akinyemi Ojesina, MD, PhD, and Adam Bass, MD, Dana-Farber and the Broad Institute; Ramesh Shivdasani, MD, PhD, Dana-Farber; Wendy Garrett, MD, PhD, Dana-Farber, Broad Institute, and Harvard School of Public Health; Curtis Huttenhower, PhD, Broad Institute and Harvard School of Public Health; Monia Michaud, MS, Harvard School of Public Health; Josep Tabernero, MD, and Jose Baselga, MD, Vall d'Hebron University Hospital, Barcelona, Spain; Chen Liu, MD, PhD, University of Florida College of Medicine; and Shuji Ogino, MD, PhD, Harvard Medical School, Dana-Farber, and Harvard School of Public Health.

The study was supported by grants from the National Human Genome Research Institute, the National Cancer Institute, and the Starr Cancer Consortium.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

The Eli and Edythe L. Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

EDITOR'S NOTE: A video of this story is also available online at: http://resources.dana-farber.org/pr/media/

Anne Doerr/Rob Levy | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>