Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new gene mutation associated with congenital myopathy

26.07.2012
Identifying previously uncharacterized gene’s role is the key first step in disease understanding and therapy development
University of Michigan researchers have discovered a new cause of congenital myopathy: a mutation in a previously uncharacterized gene, according to research published this month in the American Journal of Human Genetics.

About 50% of congenital myopathy cases currently do not have a known genetic basis, presenting a clear barrier to understanding disease and developing therapy, says James Dowling, M.D., Ph.D., the paper’s co-senior author and assistant professor of Pediatric Neurology at the University of Michigan’s C.S. Mott Children’s Hospital. Finding a new myopathy gene opens the possibility of providing a genetic explanation for disease in these individuals where no genetic cause is currently known.

In addition, “the identification of a new myopathy gene is an essential first step towards understanding why this disease occurs and how we combat its effects.” says Dowling, who worked with Margit Burmeister, Ph.D. and her team from the University of Michigan’s Molecular and Behavioral Neuroscience Institute to study the new myopathy gene (CCDC78).

Dowling says the gene, which has not been studied previously, is an important potential regulator of muscle function and, in particular, part of an important muscle structure called the triad.

“Many myopathies and dystrophies have abnormal triad structure/function, so finding a new gene product involved in its regulation will help researchers better understand the triad and its relationship to muscle disease,” Dowling says.

Congenital myopathies are clinically and genetically heterogeneous diseases that typically become evident in childhood with hypotonia and weakness. They are associated with impaired mobility, progressive scoliosis, chronic respiratory failure and often early death.

Currently there are no known treatments or disease modifying therapies for congenital myopathies.

The researchers performed linkage analysis followed by whole exome capture and next generation sequencing in a family with congenital myopathy. They then validated the gene mutation and provided insights into the disease pathomechanisms using the zebrafish model system.

Dowling says the researchers’ next step is to further model the disease using zebrafish, in the hopes that this knowledge can be translated into therapy development.

“The study provides the first descriptions of the zebrafish model, and gives insight into how we will use it,” says Dowling, who also is director of the Pediatric Neuromuscular Disorders Clinic at C.S. Mott Children’s Hospital.

“Once we develop and characterize a model of the disease, we can then use it as a platform for therapy development.”
Journal reference: AJHG-D-12-00101R4

Funding: National Institutes of Health, the Muscular Dystrophy Association, The A. Alfred Taubman Medical Research Institute, Anderson Family Foundation.

Additional authors: Of the University of Michigan: Karen Majczenko, M.D.; Ann E. Davidson, Ph.D.; Sandra Camelo-Piragua, M.D.; Xingli Li; Sucheta Joshi, M.D.; Jishu Xu; Weiping Peng; Alan H. Beggs, Ph.D.; Jun Z. Li, Ph.D.; Margit Burmeister, Ph.D. Of Boston Children’s Hospital: Pankaj B. Agrawal, Ph.D; Richard A. Manfready.

About the University of Michigan’s C.S. Mott Children’s Hospital: Since 1903, the University of Michigan has led the way in providing comprehensive, specialized health care for children. From leading-edge heart surgery that's performed in the womb to complete emergency care that's there when you need it, families from all over come to the U-M C.S. Mott Children's Hospital for our pediatric expertise.

For more information, go to www.mottchildren.org

For more information about pediatric neuromuscular services go to http://www.mottchildren.org/our-locations/burlington-ped+neuromuscular

Mary F. Masson | EurekAlert!
Further information:
http://www.mottchildren.org
http://www.umich.edu

More articles from Life Sciences:

nachricht Quick notes in the genome
07.07.2020 | Max-Planck-Institut für molekulare Genetik

nachricht Limitations of Super-Resolution Microscopy Overcome
07.07.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>