Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers examine plant's ability to identify, block invading bacteria

04.03.2010
Understanding how plants defend themselves from bacterial infections may help researchers understand how people and other animals could be better protected from such pathogens.

That's the idea behind a study to observe a specific bacteria that infects tomatoes but normally does not bother the common laboratory plant arabidopsis. Researchers hoped to understand how infection is selective in various organisms, according to a Texas AgriLife Research scientist.

Dr. Hisashi Koiwa collaborated with colleagues in Germany and Switzerland to examine the immune capabilities of different mutations of the arabidopsis plant. Their findings appeared in the Journal of Biological Chemistry.

In this study, the team was trying to figure out how a plant defends itself rather than how it gets sick, said Koiwa, who provided about 10 different lines of mutant arabidopsis plants grown in his lab at Texas A&M University.

"By learning what is wrong with a sick plant," he said, "we can study how a plant can defend itself, what mechanisms it uses for protection."

The team had to examine the plants at the cellular level where molecules are busy performing different jobs.

To understand the process, one has to examine components such as "N-glycans, receptors and ligands," Koiwa said.

The N-glycan is a polysaccharide that is critical in protein folding, a natural process which if it becomes unstable leads to various diseases, Koiwa explained. A receptor is a protein decorated with N-glycans which awaits signals from the ligands that bind and activate receptor molecules.

In viewing this mechanism across various arabidopsis plants that had been mutated to achieve different N-glycan structures, the researchers found one particular N-glycan that was critical in making sure that the receptor molecules can recognize the targeted bacteria molecule, he said.

If that polysaccharide can recognize a pathogen, it can prevent infection thus making the plant immune to that disease, the scientists noted.

"The question is fundamental. Why are we healthy in an environment of so many different bacteria?" Koiwa asked. "Why can one pathogen infect one kind of organism and not others? In this case, the same bacteria normally infects tomato plants but not arabidopsis."

Koiwa said many researchers are studying the pathway, or molecular road, that a pathogen takes on its journey to infect another organism. They want to find what "gates" exist in an organism that prevent infection with the notion that the same blocks could be adapted in a susceptible organism to prevent disease.

He said eventually using this pathway to develop new plant varieties that do not allow pathogens inside the cells would be better than breeding lines that are merely "resistant" to diseases.

"In the case of resistance, a plant has to try to fend off an infection that has been let in," Koiwa explained. "But a properly working immunity system does not let the pathogen in, so the plant does not get sick in the first place."

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>