Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Engineer New Methane-Production Pathway in Microorganism

09.12.2010
Research opens door to possible conversion of biomass to natural gas

A University of Arkansas researcher and his colleagues have created the first methane-producing microorganism that can metabolize complex carbon structures, which could lead to microbial recycling of waste products and their transformation into natural gas.

Daniel J. Lessner, assistant professor of biological sciences, and his colleagues Lexhan Lhu, Christopher S. Wahal and James G. Ferry of Pennsylvania State University, published their findings in mBio. Lessner conducted the research as a postdoctoral associate at Penn State.

While methane gas is considered to be a greenhouse gas, it also is an important biofuel, used to power businesses and homes. Finding ways to produce methane gas efficiently therefore interests individuals and industries alike.

Lessner and his colleagues worked with methanogens, methane-producing anaerobic microorganisms from the domain archaea that are thought to date back further in time than any other life form.

“Methanogens are the only organisms that produce methane biologically, but they are limited in what they can use to produce methane,” said Lessner. In nature, a consortium of anaerobic microorganisms break down carbon-rich items, such as leaves in a pond, into simple molecules consisting of one or two carbon atoms, which methanogens then consume, producing methane in the process. Because this process involves multiple species, it can be easily disrupted, and would not be an efficient way to mass-produce methane gas.

Lessner and his colleagues decided to introduce a gene into a methanogen that would allow it to break down more complex molecules for its own consumption. To do this, they introduced a gene into the DNA of the methanogen Methanosarcina acetivorans that expresses an enzyme that breaks down esters, which are found in nature and also solvents used in paints and paint thinners.

After introducing the enzyme into the methanogen, the researchers demonstrated that M. acetivorans grew, consumed almost all of the esters, and produced methane from them.

“This establishes a platform to begin engineering these organisms to consume different substrates,” Lessner said. This engineered pathway expands the narrow range of substrates used by methanogens, which may lead to more efficient conversion of biomass to methane gas. While esters might not work at an industrial scale, it might be possible to engineer a methanogen that can break down glycerol, a waste product from biodiesel fuel, and have it produce methane.

CONTACTS:
Daniel J. Lessner, assistant professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-2239, lessner@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>