Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers engineer insulin-producing cells activated by light for diabetes

04.11.2019

Pancreatic beta cells 'switched on' by light are engineered to enhance production of insulin in response to glucose levels

Tufts University researchers have transplanted engineered pancreatic beta cells into diabetic mice, then caused the cells to produce more than two to three times the typical level of insulin by exposing them to light.


Researchers induced engineered pancreatic beta cells to secrete insulin when exposed to blue light. Insulin is shown here as a space filling atomic model.

Credit: Tufts University

The light-switchable cells are designed to compensate for the lower insulin production or reduced insulin response found in diabetic individuals. The study published in ACS Synthetic Biology shows that glucose levels can be controlled in a mouse model of diabetes without pharmacological intervention.

Insulin is a hormone that plays a central role in precisely controlling levels of circulating glucose - the essential fuel used by cells -. Diabetes affects more than 30 million Americans according to the Centers for Disease Control and Prevention (CDC).

In type II diabetes - the most common form of the disease - the cells of the body become inefficient at responding to insulin and as a consequence, glucose in circulation can become dangerously high (hyperglycemia) while the pancreas cannot produce enough insulin to compensate. In type I diabetes, the beta cells, which are the only cells in the body that produce insulin, are destroyed by the immune system resulting in complete lack of the hormone.

Current treatments include the administration of drugs that enhance the production of insulin by pancreatic beta cells, or direct injection of insulin to supplement the naturally produced supply. In both cases, regulation of blood glucose becomes a manual process, with drug or insulin intervention conducted after periodic readings of glucose levels, often leading to spikes and valleys that can have harmful long-term effects.

The researchers sought to develop a new way to amplify insulin production while maintaining the important real-time link between the release of insulin and concentration of glucose in the bloodstream. They accomplished this by taking advantage of 'optogenetics', an approach relying on proteins that change their activity on demand with light. Pancreatic beta cells were engineered with a gene that encodes a photoactivatable adenylate cyclase (PAC) enzyme.

The PAC produces the molecule cyclic adenosine monophosphate (cAMP) when exposed to blue light, which in turn cranks up the glucose-stimulated production of insulin in the beta cell. Insulin production can increase two- to three-fold, but only when the blood glucose amount is high. At low levels of glucose, insulin production remains low. This avoids a common drawback of diabetes treatments which can overcompensate on insulin exposure and leave the patient with harmful or dangerously low blood sugar (hypoglycemia).

Researchers found that transplanting the engineered pancreatic beta cells under the skin of diabetic mice led to improved tolerance and regulation of glucose, reduced hyperglycemia, and higher levels of plasma insulin when subjected to illumination with blue light.

"It's a backwards analogy, but we are actually using light to turn on and off a biological switch," said Emmanuel Tzanakakis, professor of chemical and biological engineering at the School of Engineering at Tufts University and corresponding author of the study.

"In this way, we can help in a diabetic context to better control and maintain appropriate levels of glucose without pharmacological intervention. The cells do the work of insulin production naturally and the regulatory circuits within them work the same; we just boost the amount of cAMP transiently in beta cells to get them to make more insulin only when it's needed."

The blue light simply flips the switch from normal to boost mode. Such optogenetic approaches utilizing light-activatable proteins for modulating the function of cells are being explored in many biological systems and have fueled efforts toward the development of a new genre of treatments.

"There are several advantages to using light to control treatment," said Fan Zhang, graduate student in Tzanakakis' lab at Tufts and first author of the study. "Obviously, the response is immediate; and despite the increased secretion of insulin, the amount of oxygen consumed by the cells does not change significantly as our study shows. Oxygen starvation is a common problem in studies involving transplanted pancreatic cells."

###

Further development of the method may include embedding sources of light, e.g. tiny, remotely triggered LEDs, for improved illumination and coupling to a glucose sensor for the creation of a bioartificial pancreas device.

This research was supported in part by the National Science Foundation NSF grant #CBET1743367.

Zhang, F. and Tzanakakis, E.S. "Amelioration of diabetes in a murine model upon transplantation of pancreatic β-cells with optogenetic control of cyclic AMP." ACS Synth Biol. 2019 Oct 18;8(10):2248-2255. DOI: 10.1021/acssynbio.9b00262

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsPR

http://www.tufts.edu 

Mike Silver | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acssynbio.9b00262

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>