Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Oldest Fossil Impression of a Flying Insect

15.10.2008
Tufts University student and a faculty lecturer uncover what they believe is the world's oldest known full-body impression of a primitive flying insect, a 300 million-year-old specimen from the Carboniferous Period. Surprise discovery made in a most unlikely place - behind a suburban strip mall.

While paleontologists may scour remote, exotic places in search of prehistoric specimens, Tufts researchers have found what they believe to be the world's oldest whole-body fossil impression of a flying insect in a wooded field behind a strip mall in North Attleboro, Mass.

During a recent exploration as part of his senior project, Richard J. Knecht, a Tufts geology major, and Jake Benner, a paleontologist and senior lecturer in the Geology Department, set out to hunt for fossils at a location they learned of while reading a master's thesis that had been written in 1929. With chisels and hammers, the team reached the shale and sandstone outcropping described in the paper. There they delicately picked away pieces of rock before reaching a section that yielded fossils. Just below the surface, they uncovered a fossilized impression of a flying insect.

Not just any fossil

It was not just any fossil. Knecht says it is the world's oldest known full-body impression of a primitive flying insect, a 300 million-year-old specimen from the Carboniferous Period. It is a rare find in the specialized world of ichnology, which is the study of fossilized animal tracks, impressions and trails to investigate behavior. Knecht says a preserved full-body impression of a flying insect from this or any previous period has never been discovered.

The fossil, Benner says, "captures a moment in time over 300 million years ago when a flying insect just happened to land on a damp, muddy surface leaving almost a perfect impression of its body behind."

Knecht and Benner presented the fossil at the Second International Congress on Ichnology, in Krakow, Poland last month. The pair will present other trace fossils from the site, including tracks of amphibians and precursors to reptiles, at the Annual Meeting of the Geological Society of America meeting in Houston later this month.

Paleontologists use fossilized remains of insect bodies to study anatomy and develop hypotheses about evolutionary processes. Typically the only evidence available for this type of work is remains of insect wings. Bodies of primitive flying insects are rarely preserved and therefore little is known about them. The North Attleboro fossil will provide researchers with evidence of how it moved once it landed on a surface, as well as its stance, position of its legs and details about its abdomen and thorax.

The impression is about three inches long and is imprinted on the flat side of a rock. The impression does not contain direct evidence of the insect having wings but Knecht and Benner say evidence suggests that it was a winged insect. According to Benner, the insect's anatomy and body plan are consistent with those of primitive flying insects. He also points out that "there are no walking tracks leading up to the body impression, indicating that it came from above."

Michael S. Engel, a leading entomologist at the University of Kansas, is working with Knecht and Benner to study the insect. He says that a preliminary inspection of the anatomy indicates that it may be related to the common mayfly. "We can tell from the imprint that it has a very squat position when it lands," Engel says. "Its legs are sprawled and its belly is pressed down. The only group that does that today is the mayfly."

Identifying the insect will also help the researchers to gain knowledge about the ecosystem of that period and what type of animals lived in it. The specimen may also advance understanding of insect flight and evolution from smaller, non-flying scurrying animals.

"Once we pin down what type of insect it is we can begin to think about the conditions, the climate and life that must have existed in the environment to support its life," says Knecht. "One focus is the insect itself. Another is the broader big picture of the world it lived in."

A moment 300 million years ago

The insect lived in the Pennsylvanian Era - the second half of the Carboniferous Period - and dates back to about 310 million years. Nearby sites of similar age exist in the Canadian Maritimes, Pennsylvania and the southeastern United States. There are no other active explorations of Pennsylvanian rock formation in New England.

Knecht learned of the site while conducting research on sedimentary rocks in the region for his senior thesis. He found an obscure reference to it in an unpublished master's thesis on amphibian trackways that was originally written by a Brown University student in 1929. The paper was published a year later in the Geological Society of America Bulletin.

Knecht, 30, is a senior at Tufts who enrolled through Tufts' Resumed Education for Adult Learners program (REAL), following coursework at the University of Massachusetts-Boston. He is a native of Chatham, Mass. At Tufts he has received four grants and fellowship money to support his work from the Paleontological Society, the Geological Society of America and Tufts University.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>