Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Molecular Gatekeeper in Enzyme

18.02.2009
Researchers from Wageningen University, along with colleagues from the University of Groningen and the University of Pavia (Italy), have unravelled the mechanism that plays a role in the natural production of vitamin C. In this process, a molecular gatekeeper blocks the entrance to the reaction centre of a crucial enzyme.

The article in which the team reports its finding has been declared Paper of the Week by the Journal of Biological Chemistry, an honour given to only one in every hundred articles.

The biological production of vitamin C in plants, fungi and many animals is a complicated process that involves enzymes. A large group of these catalysts need oxygen to function well. In plants, a chemical, cytochrome C, replaces the function of oxygen. Cytochrome C or oxygen ensures that the co-factor flavin in the enzyme's action centre is brought back to its original state after reaction. Because of this restoration, the enzyme is ready for a new reaction.

The research team wondered why the one group of enzymes reacted with oxygen and the other, closely related group did not. How does the oxygen reach the centre of the enzyme, which consists of about 500 hundred linked building blocks (amino acids) of different sizes and forms. This string of building blocks is, as it were, bunched up into a little lump with 'holes, caverns and tunnels' in between. Oxygen has to seep through this little lump or clear a path through the tangle of amino acids in order to penetrate the hidden flavin in the centre.

Imagine, the researchers said, that in some enzymes oxygen can reach the enzyme's centre through tunnels and holes. You should then be able to discover the route using the structure. Unfortunately, there was no crystalline structure of the enzyme in question on hand. There was, however, one other possibility. By laying side by side all of the individual building blocks of the enzymes that react with oxygen and those that do not, the differences should become clear.

Comparing both analyses brought a subtle difference to light. Only one building block, number 113, at the end of a possible route turned out to be a bit different. This difference relates to the amino acid alanine. When alanine was replaced by the smaller building block glycine at that position, it turned out that the enzyme was suddenly oxygen permeable. And not just a little bit. The difference is so large it's as if a dam has burst: a factor of 400.

How is it possible that one building block in a construction of 500 blocks can have so much effect? The researchers support the tunnel theory: the building block alanine has four different protrusions, while glycine has only three. Alanine's extra protrusion, a methyl group, blocks the tunnel and prevents oxygen from penetrating the centre. At this site, alanine works as a gatekeeper and it keeps the door tightly shut.

But, why isn't the gate just simply open? Evidently, having a strict gatekeeper has its advantages. It turns out that the aggressive substance hydrogen peroxide ('domestic bleach') forms in the reaction with oxygen. Hydrogen peroxide accelerates the ageing of cells and a plant, which makes a lot of vitamin C, does not like this.

The way is now open to prepare vitamin C in a natural way. However, the chemical route already exists, is cheap and yields an identical product. The deciphered mechanism is, however, also applicable to similar biochemical reactions, for example, the preparation of vanilla. Additionally, the deciphered process can mean a step forward in synthetic biology in which products that do not occur or hardly occur in nature can be produced in a natural way.

Jac Niessen | alfa
Further information:
http://www.wur.nl
http://www.wur.nl/UK/newsagenda/news/Gatekeeper090216.htm

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>