Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Mechanism Behind Cellular Energy Conversion

20.08.2010
Researchers from Mount Sinai School of Medicine have enhanced our understanding of the mechanism by which cells achieve energy conversion, the process in which food is converted into the energy required by cells. This groundbreaking research helps scientists gain atomic-level insight into how organisms synthesize their major form of chemical energy. The researchers’ findings were published in the August issue of PLoS Biology.

Cells use the enzyme ATP synthase to generate a chemical called ATP, the form of energy cells use to function. Structurally, ATP synthase is a nano-machine, a cellular “motor” that consists of proton turbines, or rotor rings, with the output being ATP. The investigators wanted to find out more about how these ATP synthase rotors work.

David Hicks, PhD, Assistant Professor of Pharmacology & Systems Therapeutics and Terry Krulwich, PhD, Sharon & Frederick A. Klingenstein-Nathan G. Kase, MD Professor of Pharmacology & Systems Therapeutics, led the Mount Sinai-based part of the effort. They and their co-investigators, Thomas Meier, PhD, and two members of his research team at the Max Planck Institute of Biophysics in Germany, grew three-dimensional protein crystals of an unusually stable rotor found in bacteria called Bacillus pseudofirmus and evaluated them using X-ray technology.

The researchers were surprised to find that these ATP synthase rotor rings use a water molecule as part of the rotary mechanism of ATP synthesis, providing a clearer understanding of how these nano-machines function. Previous studies of a rotor from a blue-green alga, the only other proton-moving rotor observed at this atomic level, showed that it did not use a water molecule.

With this new insight, they were able to infer how ATP synthase captures the protons that drive the rotation of the “motor” and visualize how those protons remain bound to the rotor. This discovery has added interest because the rotor structure of these bacteria is similar in some ways to the motors driving ATP synthesis in human cells and pathogens like the tuberculosis bacteria.

“We are excited about the broad implications of these data in helping us move toward a more detailed model of the mechanisms of action behind cellular energy conversion,” said Dr. Krulwich. “These findings provide a launching pad for better understanding a basic life process in organisms ranging from bacteria to humans. We look forward to studying this development further.”

Drs. Hicks and Krulwich and the Meier team will continue studying this finding and plan to further evaluate these cellular nano-machines. Working with this discovery, they will next evaluate mutations or malfunctions in the ATP synthase rotor.

This research is supported by the National Institute of General Medical Studies of the National Institutes of Health.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation’s oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation’s top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org.
Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | Newswise Science News
Further information:
http://www.mssm.edu
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>