Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Key to Cell Specialization

14.11.2011
Researchers at then Albert Einstein College of Medicine of Yeshiva University have uncovered a mechanism that governs how cells become specialized during development. Their findings could have implications for human health and disease and appear in the November 10 online edition of the journal Cell.

A fundamental question in biology is how a fertilized egg gives rise to many different cells in the body, such as nerve, blood and liver. By providing insight into that process, known as differentiation, the findings by the Einstein researchers are relevant to cancer, stem cell research and regenerative medicine.

The scientists studied cell differentiation in the fruit fly, Drosophila melanogaster. They found that cell specialization depends on a pair of proteins that act as super regulators of proteins that were already known—one super-regulating protein encouraging a cell to differentiate and the other trying to hold back the process.

The research was conducted by senior author Nicholas Baker, Ph.D., professor of genetics, of developmental and molecular biology, and of ophthalmology and visual sciences at Einstein, and graduate student Abhishek Bhattacharya, the paper’s lead author. They studied Helix-Loop-Helix proteins, “master-regulating” proteins that were known to play a role in the differentiation of fruit fly cells such as muscle, fat and nervous-system cells. By examining eye development in the fruit fly, they found that these master-regulating Helix-Loop-Helix proteins are in turn controlled by “super-regulating” proteins that bind with them.

Successful cell differentiation requires the presence of both master-regulating and super-regulating proteins. “If you don’t turn both of those keys, cell differentiation doesn’t work properly,” said Dr. Baker.

One of these super-regulating proteins, called E-protein Daughterless (Da), binds with Helix-Loop-Helix proteins to activate them. Da also triggers expression of a protein called Extramacrochaetae (Emc), which turns the Helix-Loop-Helix proteins off. Through this feedback-loop mechanism, Da and Emc allow Helix-Loop-Helix proteins to function during specific times during fruit-fly development to create the fly’s specialized cells.

Similar findings seem to apply to the Helix-Loop-Helix proteins that are present in human cells, where they are involved in cancer as well as in the differentiation of stem cells into specialized tissues. “We would expect that there will be people in the stem cell field that would be quite interested in what we have found,” Dr. Baker said.

The paper is titled “A network of broadly-expressed HLH genes regulates tissue-specific cell fates.” This research was supported in part by the National Institute of General Medical Sciences, part of the National Institutes of Health, and Research to Prevent Blindness.

About Albert Einstein College of Medicine of Yeshiva University
Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2010-2011 academic year, Einstein is home to 724 M.D. students, 256 Ph.D. students, 122 students in the combined M.D./Ph.D. program, and 375 postdoctoral research fellows. The College of Medicine has 2,770 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $135 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu.

Kim Newman | Newswise Science News
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>