Researchers discover important link between adrenal gland hormone and brain in hypertension

Researchers at UT Southwestern Medical Center studied patients who overproduce aldosterone to see whether the hormone had any effect on sympathetic nerve activity responsible for blood pressure increases.

“Between 10 percent and 20 percent of patients with high blood pressure who are resistant to treatment have elevated aldosterone hormones,” said Dr. Wanpen Vongpatanasin, associate professor of internal medicine at UT Southwestern and senior author of the study in the October issue of the Journal of Clinical Endocrinology & Metabolism. “Previous studies in animals showed that this hormone can affect many parts of the brain that control the cardiovascular system. We wanted to understand whether aldosterone also increases the nerve activity that causes constriction of blood vessels, which elevates blood pressure in humans.

“Since aldosterone can cause high blood pressure by affecting multiple systems and not just the kidneys, this study sheds light on why blood pressure is so difficult to control in patients with high aldosterone levels.”

Aldosterone is an essential hormone that regulates electrolytes in the body. Created by the adrenal glands, it is responsible for re-absorption of sodium and water into the bloodstream and for regulating potassium. High levels of aldosterone can cause high blood pressure, muscle cramps and weakness.

Dr. Vongpatanasin and her team studied 14 hypertensive patients who overproduced aldosterone, a condition known as primary aldosteronism, and compared them with 20 hypertensive patients and 18 patients with normal blood pressure.

The data showed that in humans, aldosterone does increase activity in a part of the nervous system that raises blood pressure. Such activity contributes to the onset of hypertension. Furthermore, when the nerve activity was measured in patients who had adrenal surgery to remove tumors that produced this hormone, both nerve activity and blood pressure decreased substantially.

“Our study also suggested that treatment of hypertension in these patients not only requires targeting the kidneys but also the sympathetic nervous system that controls blood pressure,” Dr. Vongpatanasin said. “Since our study shows that patients with high aldosterone levels have high nerve activity, future studies are needed to determine how we could prevent effects of aldosterone on the brain.”

The research was supported by the National Institutes of Health, the Donald W. Reynolds Foundation, the George M. O'Brien Kidney Research Center, the Lincy Foundation and the Burroughs Wellcome Fund.

Other UT Southwestern researchers who contributed to the study included senior author Dr. Andrew Kontak, postdoctoral researcher in internal medicine; Dr. Zhongyun Wang, research associate in internal medicine; Debbie Arbique, advance practice nurse in internal medicine; Beverley Adams-Huet, assistant professor of clinical sciences; Dr. Richard Auchus, professor of internal medicine; and Dr. Shawna Nesbitt, associate professor of internal medicine. Other researchers included Dr. Ronald Victor of Cedars-Sinai Medical Center.

Visit http://www.utsouthwestern.org/endocrinology to learn more about clinical services in endocrinology at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Media Contact

LaKisha Ladson EurekAlert!

More Information:

http://www.utsouthwestern.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors