Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover that gene switches on during development of epilepsy

27.04.2009
A discovery made by researchers at Wake Forest University School of Medicine while studying mice may help explain how some people without a genetic predisposition to epilepsy can develop the disorder.

In a study published this month in the Journal of Neuroscience, senior researcher Dwayne W. Godwin, Ph.D., a professor of neurobiology and anatomy, and colleagues, report discovering that a gene, already known to predispose people who inherit an active form of it to certain forms of epilepsy, can actually be "switched on" in animals that do not appear to have inherited the active form, and therefore a genetic predisposition, to the condition. The gene codes a calcium channel in the brain that underlies seizures, so the finding may reveal a mechanism by which epilepsy develops in those with no apparent genetic predisposition to it.

"Epilepsy is a terrible disorder that affects millions of kids and adults all over the world," Godwin said. "There are many different forms of epilepsy with different symptoms. We don't know why some people acquire epilepsy – the cause isn't always clear from the person's genetic makeup. We do know that in some forms of epilepsy, once someone has a seizure they tend to have more. Our findings from this study suggest that something about the brain changes that can lead to this increased tendency to have a seizure. Our study shows that an important change occurs in calcium channels that help to transmit this abnormal activity throughout the brain."

Calcium channels come in a variety of forms throughout the body and are responsible for several key functions, depending on their placement and quantity. The calcium channels in the brain are normally embedded within the membrane of brain cells, where they allow passage of calcium ions into the cell and are responsible for the electrical activity of the brain. The passage of calcium ions into cells determines how excitable the cells are, and how easily abnormal activity spreads through the brain.

If, as in epilepsy, a particular channel shows up where it is not supposed to or appears in too many or too few numbers, the function that channel is responsible for can become abnormal. Researchers know that during epileptic seizures, these calcium channels in the brain, responsible for generating electrical brain rhythms, become highly active.

For the study, researchers used a mouse model to observe changes in tissue from regions of the brain that are involved in seizures, the hippocampus and the thalamus. They measured these changes at different time intervals as the mice developed epilepsy. The researchers found that after an initial seizure, more of this particular kind of calcium channel begins to be expressed where it wasn't before, and the presence of the channel caused brain activity to become increasingly abnormal and epileptic.

"Calcium channels underlie valuable functions," Godwin said. "But in the wrong place, at the wrong time, or in the wrong amount, their presence can be disruptive. In the context of brain circuits, the brain cells that have too many copies of the channel get over excited and respond abnormally."

While the hippocampus is usually targeted in studies of epilepsy, the new channels were being made in a region of the brain called the thalamus. The thalamus is connected to the hippocampus and is involved in the spread of seizures throughout the brain.

"Certain kinds of channels are normal and expected in the thalamus, but after an initial seizure more copies of a channel that isn't normally found in this brain region begin to appear," explained graduate student John Graef, the first author on the study. "The brain activity then becomes dominated by the new copies of this channel. It helps explain how seizures can develop and spread."

The particular gene that codes for the misplaced channel has been called a "susceptibility gene" within the research community because it shows up in the genetic makeup of some individuals with epilepsy. In other individuals, there is no genetic indication that they are capable of making extra copies of the channel.

"What we've shown is that this gene can be switched on in individuals who don't appear to have inherited the susceptibility," Godwin said.

The good news is that certain drugs can inhibit calcium channels, so, if researchers can determine that the over-expression of this calcium channel is solely responsible for seizure activity, future studies could look into the possibility of selectively inhibiting the channel with drugs, or even nutritional changes. Godwin explained that this study provided vital information but that more work needs to be done to translate the findings to human patients.

Other co-authors on the study, funded by Citizens United for Research in Epilepsy, the National Eye Institute and the National Institute on Alcohol Abuse and Alcoholism, are Brian Nordskog, Ph.D., and Walter Wiggins, a medical student, both of Wake Forest University School of Medicine.

Media Relations Contacts: Jessica Guenzel, jguenzel@wfubmc.edu, (336) 716-3487; Bonnie Davis, bdavis@wfubmc.edu, (336) 716-4977; or Shannon Koontz, shkoontz@wfubmc.edu, (336) 716-4587

Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children's Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university's School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of "America's Best Hospitals" by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America's Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>