Researchers discover gene that helps control the production of stomach acid

This data is published in the Nov. 3 edition of the Proceedings of the National Academy of Sciences (PNAS).

UC professor Manoocher Soleimani, MD, and colleagues found that when transporter Slc26a9—the gene responsible for the production of chloride in the stomach—is eliminated from the mouse model's system, acid secretion in the stomach stops.

Gastric acid, comprised mainly of hydrochloric acid (HCL), is the main secretion in the stomach and helps the body to break down and digest food.

“Investigators were already aware of the gene that caused hydrogen to secrete in the stomach, but the gene that caused chloride to secrete has remained an unknown,” Soleimani says. “When we knocked out—or eliminated—this specific transporter in mouse models, acid secretion in the stomach completely halted.”

“The hydrogen and chloride genes must work together in order for the stomach to produce acid and function normally.”

Soleimani, director of UC's nephrology division and principal investigator of the study, hopes that this data can help researchers create more therapies for people who overproduce stomach acid.

“A very large number of people have acid reflux—caused by regurgitation of stomach acid into the esophagus—or peptic ulcers—caused by the passing of excess stomach acid into the small intestine,” Soleimani says. “This occurs because of overproduction of acid in the stomach, and current medications that help control this condition cause undesirable side effects.”

He adds that long-term use of these kinds of drugs could cause damage to the lining of the stomach, among other problems.

“With this information, we hope to one day be able to administer gene therapies to patients and avoid this painful and damaging problem altogether,” he says.

Media Contact

Katie Pence EurekAlert!

More Information:

http://www.uc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors