Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why eczema often leads to asthma

19.05.2009
Many young children who get a severe skin rash develop asthma months or years later. Doctors call the progression from eczema, or atopic dermatitis, to breathing problems the atopic march.

Now scientists at Washington University School of Medicine in St. Louis have uncovered what might be the key to atopic march. They've shown that a substance secreted by damaged skin circulates through the body and triggers asthmatic symptoms in allergen-exposed laboratory mice.

The findings, published May 19, 2009, in Public Library of Science Biology, suggest that early treatment of skin rash and inhibition of the trigger substance might block asthma development in young patients with eczema.

Fifty percent to 70 percent of children with severe atopic dermatitis go on to develop asthma, studies show. By comparison, the rate of asthma incidence among the general population is only about 9 percent in children and 7 percent in adults. Seventeen percent of U.S. children suffer from atopic dermatitis, although not all cases are considered severe.

"Over the years, the clinical community has struggled to explain atopic march," says study author Raphael Kopan, Ph.D., professor of developmental biology and of dermatology. "So when we found that the skin of mice with an eczema-like condition produced a substance previously implicated in asthma, we decided to investigate further. We found that the mice also suffered from asthma-like responses to inhaled allergens, implicating the substance, called TSLP, as the link between eczema and asthma."

Doctors and scientists had come up with theories to explain why a skin rash is sometimes associated with asthma. Do some people have an immune system disorder that causes an overreaction to allergens that contact the skin and lung airways? Or is it the opposite — do they have defective skin and airways that trigger an excessive immune response?

Kopan's findings suggest the problem starts with damaged or defective skin. The researchers found that cells in damaged skin can secrete TSLP (thymic stromal lymphopoietin), a compound capable of eliciting a powerful immune response. And because the skin is so effective in secreting TSLP into the blood system, the substance travels throughout the body. When it reaches the lungs, it triggers the hypersensitivity characteristic of asthma.

Led by doctoral student Shadmehr (Shawn) Demehri, the researchers studied mice that had been engineered with a genetic defect in patches of their skin. In the affected areas, the typically ordered layers of skin cells were disrupted, creating a condition similar to eczema. These patches were thickened and inflamed. The defective skin secreted TSLP as part of an alarm system alerting the body that its protective barrier function has failed — the substance activates an immune response that fights invaders.

Operating on the assumption that other barrier organs such as the lung will understand this alarm, the researchers tested what happened when the mice with skin defects inhaled an allergen. They found that their lungs reacted strongly — their breathing became labored and their lung tissue took on the traits that mark asthma in humans: mucous secretion, airway muscle contraction, invasion by white blood cells and conversion of lung cells from one type to another. Additional experiments showed that mice that had normal skin but were engineered to overproduce TSLP also developed the asthma-like symptoms.

"We are excited because we've narrowed down the problem of atopic march to one molecule," Kopan says. "We've shown that skin can act as a signaling organ and drive allergic inflammation in the lung by releasing TSLP. Now it will be important to address how to prevent defective skin from producing TSLP. If that can be done, the link between eczema and asthma could be broken."

TSLP is also produced in lungs of asthma patients, and Kopan says that research in the skin could eventually lead to ways to interfere with TSLP made in the lungs and thereby ease asthma development even in cases that aren't linked to eczema.

"This research is a great example of the value of basic research approaches in uncovering the root causes of disease," says Richard Anderson, M.D., Ph.D., of the National Institutes of Health's National Institute of General Medical Sciences, which partially supported the work. "If these mechanisms operate the same way in humans, we could be on our way toward developing new strategies for preventing or treating asthma."

Demehri S, Morimoto M, Holtzman MJ, Kopan R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. Public Library of Science Biology. May 19, 2009.

Funding from the National Institute of General Medical Sciences, Washington University, the Toyobo Biotechnology Foundation Long-term Research Grant and the Japanese Society for the Promotion of Science supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>